Strategic Communications and Marketing News Bureau

‘Molecular prosthetics’ can replace missing proteins to treat disease

CHAMPAIGN, Ill. — Researchers have demonstrated that a small molecule can transport iron in human cells and live animals when proteins that normally do the same job are missing, a condition that often causes severe anemia in patients. Such “molecular prosthetics” might treat a host of incurable diseases caused by protein deficiencies, such as anemias, cystic fibrosis or certain types of heart disease.

Researchers at the University of Illinois and collaborators at Harvard Medical School and Northeastern University published their work the journal Science.

See a video at https://youtu.be/n–1DgIg5Nc.

“If you’ve lost a hand, even a simple prosthetic device is really helpful. In the same way, we found that a small molecule that replicates the main job of a missing protein can be sufficient to restore functionality in cells and animals,” said Dr. Martin D. Burke, the leader of the study. Burke is a professor of chemistry at Illinois and the interim associate dean for research at the Carle Illinois College of Medicine.

“If you’re sick because you have too much protein function, in many cases we can do something about it. But if you’re sick because you’re missing a protein that does an essential function, we struggle to do anything other than treat the symptoms. It’s a huge unmet medical need,” said Burke, who also is a medical doctor.

Burke’s team found that a small molecule called hinokitiol, derived from a species of cypress tree found in Japan, can transport iron across cell membranes that are missing transport proteins.

The small molecule hinokitiol transports iron across cell membranes where transport proteins are missing. See an animation at https://www.youtube.com/watch?v=sD_BwBhQqyo.

The small molecule hinokitiol transports iron across cell membranes where transport proteins are missing. See an animation at https://www.youtube.com/watch?v=sD_BwBhQqyo.

In a healthy system, transport proteins move iron across cell membranes to uptake iron from the gut or make hemoglobin for red blood cells. But when the transport protein is missing, iron can’t cross the membrane, causing anemia. The researchers found that three hinokitiol molecules can wrap around an iron atom and transport it directly across the membrane where the missing protein should be.

The researchers tested hinokitiol in mice, rats and zebrafish that were missing iron-transport proteins. They found that orally administered hinokitiol restored iron uptake in the guts of mice and rats, and that simply adding it to the tank of anemic zebrafish prompted hemoglobin production. They also found that it restored iron transport in human cells taken from the lining of the gut.

Next, Burke’s group hopes to find more small molecules that can function as molecular prosthetics for other diseases caused by protein deficiencies, with a particular focus on cystic fibrosis.

“These findings suggest that replacing missing proteins with molecular-scale prosthetics may represent a general way to think about treating a wide range of human diseases that have thus far remained out of reach with traditional medicine,” Burke said.

The National Institutes of Health and the Howard Hughes Medical Institute supported this work.

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Editor’s notes: To reach Marty Burke, call 217-244-8726; email: mdburke@illinois.edu.

Multimedia files are available at https://uofi.app.box.com/v/molecularprosthetics.

The paper “Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals” is available online. DOI: 10.1126/science.aah3862

 

Read Next

Life sciences Photo of Michael Ward standing in tall grass on a riverbank.

How are migrating wild birds affected by H5N1 infection in the U.S.?

Each spring, roughly 3.5 billion wild birds migrate from their warm winter havens to their breeding grounds across North America, eating insects, distributing plant seeds and providing a variety of other ecosystem services to stopping sites along the way. Some also carry diseases like avian influenza, a worry for agricultural, environmental and public health authorities. […]

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010