Strategic Communications and Marketing News Bureau

Models predict optimal airplane seating for reduced viral transmission

CHAMPAIGN, Ill. — As airline ticket sales have soared during the holiday season and the omicron variant causes surges of COVID-19 cases, a new University of Illinois Urbana-Champaign study may help passengers and airlines reduce risk of COVID-19 transmission by optimally seating passengers to minimize potential virus spread.

Sheldon H. Jacobson, a professor of computer science and of the Carle Illinois College of Medicine, along with graduate students John Pavlik and Ian Ludden, used the most current data on aerosol spread on airplanes to calculate optimal seating assignments for common Boeing aircraft at different capacities.

“Spacing is an obvious challenge on airplanes, especially when the planes are filled at or near capacity over the holiday season. So anything that can be done to reduce risk is a smart choice for everybody,” Jacobson said. “We try to aggregate the risk across all passengers to minimize the overall risk of transmission in an airplane and think about what policies could be most effective.”

The trio previously had calculated models for the airplane seating assignment problem based on droplet transmission, primarily spread through coughing; new data on aerosol transmission for the virus that causes COVID-19 allowed them to create updated models for minimizing risk of transmission based on all the factors currently known. They published their findings in the Journal of Air Transport Management.

The researchers found that, regardless of seating arrangement, masking reduced the risk of transmission by 30% over allowing passengers to unmask. Spacing and passengers opening the air vents above their seats provided additional layers of risk reduction.

While the general principle of leaving middle seats open is a good way to reduce risk, it is not always the best way, the researchers found. Because the aerosol transmission data shows that viral particles can circulate to passengers in front of or behind a seat as well as to others in the same row, the models show the most effective seating arrangements involved a mixture of leaving middle seats open and skipping some rows.

In addition, the very last rows in the back of the plane had less transmission, owing to having fewer people behind them, so in a fuller plane, those rows could be filled, as well as the roomier seats in higher classes.

“The good news financially for airline companies is that there are already fewer neighbors and more space for the first class or business class seats toward the front. So those are safer seats, and you can sell those out if possible and leave seats in economy empty to prioritize safety,” Ludden said.

The models assume each passenger is traveling as an individual, but when families or household groups travel on the same flight and sit together as one block, it reduces overall risk since the group functions as one unit, the researchers said.

“One thing that airlines can do to mitigate risk while still filling seats is make it easier for families to sit together,” Ludden said. “Traveler groups often are split up, but if airlines can prioritize keeping the members near each other, then you group those dependent risks together and reduce the overall risk of a transmission on the plane.”

The researchers also encourage the ongoing use of masks, whether enforced by continued federal mandate or by airline policy.

“Following the guidelines works,” Jacobson said. “If you follow them when you’re on an airplane, you’re going to help yourself and you’re going to help everybody else. A mask is a barrier to your respiratory system. Your individual risk of contracting or spreading the virus depends on how good that barrier is and whether you remove it. Risk reduction is possible, but risk cannot be completely eliminated.”

Editor’s note: To contact Sheldon H. Jacobson, call 217-244-7275; email shj@illinois.edu.

The paper “SARS-CoV-2 aerosol risk models for the airplane seating assignment problem” is available online. DOI: 10.1016/j.jairtraman.2021.102175

Read Next

Humanities Diptych image with book cover of "The New Internationals" and a headshot of English professor David Wright Faladé

English professor’s novel tells of love triangle in post-WWII Paris, based on his family history

CHAMPAIGN, Ill. — A new novel by University of Illinois Urbana-Champaign English professor David Wright Faladé tells the story of three people in a love triangle in post-World War II Paris. The characters in “The New Internationals” — a young French woman who has survived the Holocaust, a university student from West Africa and a […]

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010