Strategic Communications and Marketing News Bureau

Miniature chain-mail fabric holds promise for smart textiles

Chang Liu, a Willett Scholar and a professor of electrical and computer engineering, and colleagues have fabricated the world's smallest chain-mail fabric.

Chang Liu, a Willett Scholar and a professor of electrical and computer engineering, and colleagues have fabricated the world’s smallest chain-mail fabric.

CHAMPAIGN, Ill. – Scientists at the University of Illinois have fabricated the world’s smallest chain-mail fabric. Combined with existing processing techniques, the flexible, metallic fabric holds promise for fully engineered smart textiles.

“The miniature fabric is an important step toward creating textiles where structure and electronics can be designed, integrated and controlled from the ground up,” said Chang Liu, a Willett Scholar and a professor of electrical and computer engineering at Illinois.

Micrograph of released metallic fabric that is expanded to the maximum area.

Micrograph of released metallic fabric that is expanded to the maximum area.

The fabric was made by Liu and graduate student Jonathan Engel. They describe the fabric and the fabrication process in the March issue of the Journal of Micromechanics and Microengineering.

The fabric is similar in construction to the chain-mail armor worn by medieval knights. It consists of a network of small rings about 500 microns in diameter and even smaller links about 400 microns long (a micron is 1 millionth of a meter). The rings and links are built upon a planar substrate and then released to create a flexible sheet that can bend along two axes and drape over curved surfaces.

Because the rings and links can slide and rotate against each other, the fabric possesses unique mechanical and electrical properties. For example, the electrical resistance changes when the fabric is stretched. These properties could prove useful for the development of smart fabric and wearable electronic devices for pervasive computing.

“The first layer of fabric could consist of silicon islands with embedded circuits or sensors,” said Liu, who also is affiliated with the university’s Beckman Institute for Advanced Science and Technology, the Institute for Genomic Biology, and the Micro and Nanotechnology Laboratory.

“The resulting fabric could generate electricity, detect movement or damage, or serve some other active role,” Liu said.

Although demonstrated at the wafer scale, the researchers’ chain-mail fabric could be made in large swatches by existing roll-to-roll processes.

The Defense Advanced Research Projects Agency funded the work.

Editor’s note: To reach Chang Liu, call 217-333-4051; e-mail: changliu@illinois.edu.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010