Strategic Communications and Marketing News Bureau

Microbial transport at Yellowstone: by land, sea or air?

Microbial transport at Yellowstone: by land, sea or air?

James E. Kloeppel, Physical Sciences Editor

(217) 244-1073; kloeppel@illinois.edu

11/14/2000

Humans have a penchant for travel – driving, sailing and flying over the planet in search of new places to live. So do microbes, say researchers at the University of Illinois who have been studying microbial transport at Mammoth Hot Springs in Yellowstone National Park.

“Hot springs comprise a complex ecosystem of interacting microbes, geochemistry and mineralogy,” said George Bonheyo, a postdoctoral researcher at the UI. “The rapid precipitation of calcium carbonate results in shifting flows, and in the sealing off of some springs and the eruption of new vents. But the source of the microbes, and the means by which they colonize new springs, has remained unknown.”

To study the possible origins of microbial populations, Bonheyo and his colleagues – geologist Bruce Fouke, microbiologist Abigail Salyers and students Beth Sanzenbacher and Janki Patel, all of the UI – first collect water, rock and air samples from the hot springs environment. Then they use the sensitive polymerase chain reaction to detect the presence of microbes in the samples.

Microbes may roam the Yellowstone countryside by many means, Bonheyo said. They might raft the waters that feed the springs. They might fly on droplets of steam rising from active vents or on bits of sediment blowing from dried springs. They might even hitchhike on the feet of bison, birds or other animals moving from one spring to another.

“Where an established spring runs into a new source, the microbes may be directly transported by the runoff of the older spring,” Bonheyo said. “But when a new spring erupts upstream of, or in isolation from other vents, the method of transport is not clear.”

For example, during field measurements conducted earlier this year, five new springs erupted at Angel Terrace, a part of the Mammoth Hot Springs complex where the deposition of calcium carbonate occurs very rapidly. Bonheyo monitored the springs to observe the process of microbial colonization.

“This was a unique opportunity to sample water from a vent system that wasn’t actively growing bacteria before,” Bonheyo said. “While we did find evidence of life in the new springs, additional work will be required to conclusively trace its origin.”

The microbes may have been present in the subterranean source waters before percolating to the surface, or they may have hitched a ride on the steam arising from surrounding springs.

To test the latter possibility, Bonheyo and his colleagues condensed steam from a nearby active vent on sheets of sterilized foil. In the resulting liquid, the researchers found the same microbes that live in the hot spring. “Whipped by winds, these microbes could be transported for hundreds of miles, or even globally,” he said. Bonheyo presented the team’s recent findings at the annual meeting of the Geological Society of America, held Nov. 9-18 in Reno, Nev. The work was sponsored by a UI Critical Research Initiatives grant.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010