Strategic Communications and Marketing News Bureau

Membraneless fuel cell is tiny, versatile

Paul Kenis, a professor of chemical and biomolecular engineering and a researcher at the Beckman Institute for Advanced Science and Technolog, has developed a fuel cell that can operate without a solid membrane separating fuel and oxidant.

Paul Kenis, a professor of chemical and biomolecular engineering and a researcher at the Beckman Institute for Advanced Science and Technolog, has developed a fuel cell that can operate without a solid membrane separating fuel and oxidant.

CHAMPAIGN, Ill. – A fuel cell designed by researchers at the University of Illinois at Urbana-Champaign can operate without a solid membrane separating fuel and oxidant, and functions with alkaline chemistry in addition to the more common acidic chemistry.

Like a battery, a fuel cell changes chemical energy into electrical energy. While most fuel cells employ a physical barrier to separate the fuel and oxidant, the microfluidic fuel cell developed at Illinois utilizes multi-stream laminar flow to accomplish the same task.

“The system uses a Y-shaped microfluidic channel in which two liquid streams containing fuel and oxidant merge and flow between catalyst-covered electrodes without mixing,” said Paul Kenis, a professor of chemical and biomolecular engineering and a researcher at the Beckman Institute for Advanced Science and Technology.

The system designed by Paul Kenis, a professor of chemical and biomolecular engineering, uses a Y-shaped microfluidic channel in which two liquid streams containing fuel and oxidant merge and flow between catalyst-covered electrodes without mixing.

The system designed by Paul Kenis, a professor of chemical and biomolecular engineering, uses a Y-shaped microfluidic channel in which two liquid streams containing fuel and oxidant merge and flow between catalyst-covered electrodes without mixing.

Fluids flowing through channels of microscale dimensions behave differently than fluids flowing through the much larger pipes found in home plumbing systems, Kenis said. “At the microscale, there is no turbulence. This laminar flow means streams of fuel and oxidant can pass side by side without having a physical barrier in between.”

A fuel cell consists of two electrodes (an anode and a cathode), a fuel source and an oxidant. Reactions at the anode liberate protons and electrons from hydrogen atoms. The protons pass through the cell to the cathode, where they recombine with electrons, which traveled through an external circuit. Most fuel cells use a polymer electrolyte membrane to separate the cathode and anode.

In the Illinois fuel cell, the physical membrane is replaced by the behavior of laminar flow. The fuel and oxidant are brought together as liquid streams in the microchannel. The protons and electrons diffuse through the liquid-liquid interface.

This configuration offers several advantages over PEM-based fuel cells, including fewer parts and simpler design. It also means that membraneless fuel cells are compatible with alkaline chemistry.

Just as alkaline batteries outperform acidic batteries, alkaline fuel cells should be superior to acidic fuel cells, Kenis said. Several problems, however, have prevented the widespread use of alkaline chemistries in PEM-based fuel cells. Among them are poor permeability of the membranes to hydroxide ions (which take the place of protons in acidic fuel cells) and clogging of the membranes from the formation of carbonates.

“Our fuel cell doesn’t suffer from these problems, because it doesn’t make use of a membrane,” said Kenis, who will describe the novel fuel cell at the spring meeting of the American Physical Society, to be held in Los Angeles, March 21-25.

In applications such as power sources for portable computers or battery chargers, multiple fuel cells will have to be integrated to attain sufficient power levels.

“Since the membraneless fuel cell is based on a phenomenon that occurs only at the microscale, we can’t just scale up to larger dimensions,” Kenis said. “Instead, we need to scale out by creating arrays of many fuel cells connected in series and in parallel.”

Collaborators included chemistry professor Andrzej Wieckowski, postdoctoral research associates Lajos Gancs, Jayashree Ranga and Piotr Waszczuk (now at Guidant), graduate students Eric Choban (now at 3M) and Jacob Spendelow, undergraduate Ajay Virkar and Larry Markoski of INI Power Systems.

The work was funded by the Army Research Office, the Beckman Institute, and the University of Illinois. The researchers have applied for a patent.

Read Next

Life sciences Photo of Michael Ward standing in tall grass on a riverbank.

How are migrating wild birds affected by H5N1 infection in the U.S.?

Each spring, roughly 3.5 billion wild birds migrate from their warm winter havens to their breeding grounds across North America, eating insects, distributing plant seeds and providing a variety of other ecosystem services to stopping sites along the way. Some also carry diseases like avian influenza, a worry for agricultural, environmental and public health authorities. […]

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010