Strategic Communications and Marketing News Bureau

Mechanics meets chemistry in new ways to manipulate matter

An overlay of images at successive stages of force-induced chemical change. The blue image is the start of the reaction. The yellow image represents the end of the reaction.

An overlay of images at successive stages of force-induced chemical change. The blue image is the start of the reaction. The yellow image represents the end of the reaction.

CHAMPAIGN, Ill. – The inventors of self-healing plastic have come up with another invention: a new way of doing chemistry.

Researchers at the University of Illinois at Urbana-Champaign have found a novel way to manipulate matter and drive chemical reactions along a desired direction. The new technique utilizes mechanical force to alter the course of chemical reactions and yield products not obtainable through conventional conditions.

Potential applications include materials that more readily repair themselves, or clearly indicate when they have been damaged.

“This is a fundamentally new way of doing chemistry,” said Jeffrey Moore, a William H. and Janet Lycan Professor of Chemistry at Illinois and corresponding author of a paper that describes the technique in the March 22 issue of the journal Nature.

“By harnessing mechanical energy, we can go into molecules and pull on specific bonds to drive desired reactions,” said Moore, who also is a researcher at the Frederick Seitz Materials Laboratory on campus and at the university’s Beckman Institute for Advanced Science and Technology.

The directionally specific nature of mechanical force makes this approach to reaction control fundamentally different from the usual chemical and physical constraints.

Nancy Sottos, professor of materials science; Scott White, professor of aerospace engineering, center; and Jeffrey Moore, professor of chemistry, have collaborated again. The inventors of self-healing plastic have come up with another invention: a new way of doing chemistry.

Nancy Sottos, professor of materials science; Scott White, professor of aerospace engineering, center; and Jeffrey Moore, professor of chemistry, have collaborated again. The inventors of self-healing plastic have come up with another invention: a new way of doing chemistry.

To demonstrate the technique, Moore and colleagues placed a mechanically active molecule – called a mechanophore – at the center of a long polymer chain. The polymer chain was then stretched in opposite directions by a flow field created by the collapse of cavitating bubbles produced by ultrasound, subjecting the mechanophore to a mechanical tug of war.

“We created a situation where a chemical reaction could go down one of two pathways,” Moore said. “By applying force to the mechanophore, we could bias which of those pathways the reaction chose to follow.”

One potential application of the technique is as a trigger to divert mechanical energy stored in stressed polymers into chemical pathways such as self-healing reactions.

For most chemical reactions to proceed the reactants need to surmount an energy barrier. The energy required is usually provided as heat, light, pressure or electrical potential. Now mechanical force can be added to that list - to the surprise of many a chemist. A reaction can literally be given a shove.

For most chemical reactions to proceed the reactants need to surmount an energy barrier. The energy required is usually provided as heat, light, pressure or electrical potential. Now mechanical force can be added to that list – to the surprise of many a chemist. A reaction can literally be given a shove.

In the original self-healing concept, microcapsules of healing agent are ruptured when a crack forms in the material. Capillary action then transports the healing agent to the crack, where it mixes with a chemical catalyst, and polymerization takes place.

With new mechanical triggers, however, mechanical energy would initiate the polymerization directly, thereby skipping many steps. The cross-linking of neighboring chains would prevent further propagation of a crack and avoid additional damage.

“We have demonstrated that it is now possible to use mechanical force to steer chemical reactions along pathways that are unattainable by conventional means,” Moore said. “We look forward to developing additional mechanophores whose chemical reactivity will be activated by external force.”

The other authors of the paper besides Moore are graduate student and lead author Charles Hickenboth, aerospace engineering professor Scott White, materials science and engineering professor Nancy Sottos, and research chemists Scott Wilson and Jerome Baudry. White, Sottos and Moore co-invented self-healing plastic.

The work was supported by the U.S. Air Force Office of Scientific Research and the Petroleum Research Fund.

Editor’s note: To reach Jeffrey Moore, call 217-244-4024; e-mail: jsmoore@illinois.edu.

Read Next

Expert viewpoints Photo of John Schwenkler surrounded by screens showing digital data.

How can digital technology contribute to human flourishing?

University of Illinois Urbana-Champaign philosophy professor John Schwenkler is the director of the new Illinois Forum on Human Flourishing in a Digital Age, housed in the philosophy department. The forum — which offers an undergraduate course, graduate fellowships, a speaker series and seminars — aims to examine the challenges and opportunities of living in a […]

Expert viewpoints Photo of Robert M. Lawless

What effect will a weakened consumer watchdog agency have on borrowers, bankruptcies?

Champaign, Ill. — University of Illinois Urbana-Champaign law professor Robert M. Lawless is a leading consumer credit and bankruptcy expert. Lawless, the Max L. Rowe Professor of Law and co-director of the Illinois Program on Law, Behavior and Social Science, spoke with News Bureau business and law editor Phil Ciciora about the Trump administration’s abrupt […]

Business Photo of Emily E. LB. Twarog, a professor of labor and employment relations and the co-director of the Regina V. Polk Women’s Labor Leadership Conference.

What are the historical precedents for consumer activism, economic blackouts?

Champaign, Ill. — The Feb. 28 “economic blackout” — in which consumers were encouraged not to spend any money for 24 hours — may have gone viral on social media, but what effect did it have in real life? Emily E. LB. Twarog is a professor of labor and employment relations and the co-director of […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010