Strategic Communications and Marketing News Bureau

Mechanics, chemistry and biomedical research join forces for noninvasive tissue therapy

CHAMPAIGN, Ill. — A fortuitous conversation between two University of Illinois scientists has opened a new line of communication between biomedical researchers and the tissues they study. The new findings, reported in the Proceedings of the National Academy of Science, show that high-intensity focused ultrasound waves can penetrate biological tissue to activate molecules able to perform specific tasks.

The research, conducted in vitro and in mice, addresses the challenges of noninvasive access to deep tissue for therapeutic purposes without causing permanent damage. The study successfully demonstrates the ability to trigger chemical reactions on demand, in a very targeted manner while using a technology already approved for medical use.

“In the broadest sense, we are trying to develop remote-controlled systems that can eventually be used in biomedical applications,” said King Li, the dean of the Carle Illinois College of Medicine, a researcher at the Beckman Institute for Advanced Science and Technology at Illinois and a study co-author.

“I learned that King was interested in finding a way to remotely activate genes using light – a field called optogenetics,” said Jeffrey Moore, the director of the Beckman Institute, a chemistry professor and a study co-author. “This presented a great opportunity to tell him about my research in synthetic polymer chemistry and mechanics.”

Moore studies synthetic molecules called mechanophores that respond to force by changing color or generating light – something he believed could harness the mechanical force of an ultrasound wave and trigger a chemical reaction that emits light. The concept is exactly what Li was seeking.

Light cannot travel through opaque material, but ultrasound waves – which have a well-documented safety record – can, the researchers said.

Gun Kim and Abigail Halmes work on equipment that emits an ultrasound wave inducing a reaction that produces light in synthetic molecules.

Gun Kim and Abigail Halmes work on equipment that emits an ultrasound wave inducing a reaction that produces light in synthetic molecules.

“Light has a limited penetration range in opaque materials, including living tissues,” Li said.  “The ability to use ultrasound to penetrate opaque materials and then trigger mechanophores to produce light deep within these materials will open up many possibilities for applications such as gene activation.”

Although the researchers have successfully demonstrated remote generation of light in biologic tissue without causing damage, the intensity of that light is still not enough for optogenetic applications.    

“We are getting close,” Moore said. “When we completed the study, we were within about a factor of 10 of the light intensity needed to switch on genes, but now we are closer to a factor of two.”

The interdisciplinary team of study co-authors, which includes electrical and computer engineering professor Michael Oelze and Beckman Institute researchers Gun Kim, Vivian Lau and Abigail Halmes, continues to refine the technique and seek other biomedical applications.

“This combination of high-intensity focused ultrasound and mechanophores can be utilized for many applications, and light production is only the beginning,” Li said. “We are already actively exploring other applications.”

To reach Jeffrey Moore, call 217-244-5289; jsmoore@illinois.edu.

To reach King Li, call 217-300-5700; kingli@illinois.edu.

The paper “High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers” is available from the U. of I. News Bureau.

Read Next

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Engineering Civil and Environmental Engineering Professor Nishant Garg, center, is joined by fellow researchers, from left: Yujia Min, Hossein Kabir, Nishant Garg, center, Chirayu Kothari and M. Farjad Iqbal, front right. In front are examples of clay samples dissolved at different concentrations in a NaOH solution. The team invented a new test that can predict the performance of cementitious materials in mere 5 minutes. This is in contrast to the standard ASTM tests, which take up to 28 days. This new advance enables real-time quality control at production plants of emerging, sustainable materials. Photo taken at the University of Illinois Urbana-Champaign on Monday, Feb. 3, 2025. (Photo by Fred Zwicky / University of Illinois Urbana-Champaign)

Researchers develop a five-minute quality test for sustainable cement industry materials

A new test developed at the University of Illinois Urbana-Champaign can predict the performance of a new type of cementitious construction material in five minutes — a significant improvement over the current industry standard method, which takes seven or more days to complete. This development is poised to advance the use of next-generation resources called supplementary cementitious materials — or SCMs — by speeding up the quality-check process before leaving the production floor.

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010