Strategic Communications and Marketing News Bureau

Mechanical engineers lend fresh insight into battery-based desalination technology

CHAMPAIGN, Ill. — To achieve more effective saltwater desalination, mechanical engineers focused on fluid movement rather than new materials in a new study. By adding microchannels to the inside of battery-like electrodes made of Prussian blue – an intense blue pigment often used in art that also has special chemical properties – researchers increased the extent of seawater desalination five times over their non-channeled counterparts to reach salinity levels below the freshwater threshold.

Portrait of researchers in the Smith group laboratory

Professor Kyle Smith, left, and graduate students Irwin Loud and Vu Do.

The study, led by University of Illinois Urbana-Champaign mechanical engineering and science professor Kyle Smith and graduate student Vu Do, used a chemical analog to Prussian blue. The findings are poised for applications in desalination, energy conversion and storage, CO2 conversion and capture, environmental remediation, and resource and nutrient recovery. 

The study is published in the journal Energy and Environmental Science. 

“In previous work, we predicted desalination could be performed using this method, but nobody had validated seawater-level desalination in the lab,” Smith said. “In the interim, we learned that in addition to the specific kind of material used in the electrodes, the system’s configuration also matters.” 

The researchers said the Prussian blue analog material works by taking hold of positively charged ions like sodium within the pigment’s crystal structure. However, it can turn into a bit of a traplike structure, where the ions easily enter but become ensnared in a maze of tiny, charged molecular-scale pore spaces inside the electrode. The team found that they would need to use a specialized apparatus to perform complex valve switching and current synchronization inside the flow cell to keep continuous desalination going, without which the system’s efficiency is hampered. 

By engraving multiple 100-micrometer wide channels – the approximate width of a human hair – onto the 5-centimeter-sized electrode, the researchers can provide the fluids with a clear path to pass through without losing the ability to pluck salt ions out of the water, the researchers said. 

A micrograph showing an example one of the microchannels

The team used laser-engraved microchannels to improve flow within their new electrodes. Pictured are views of a single microchannel from above, left, and the side, right. 

The setup used for this study can desalinate laboratory-prepared seawater at a rate of milliliters over the course of hours, so the team’s next step is to scale up, the researchers said.

“The goal of the Navy grant used to fund this study is to desalinate two to four gallons per hour – using diesel fuel as a power source – to provide a portable device to supply water to military troops in small expeditionary units,” Smith said.  “Of course, our group is interested in much broader applications for these battery-like devices, but scaling up will be an essential step to getting there.”

“One remarkable aspect of this study is the mechanical engineering edge that we provide,” Do said. “In the research community, there’s a lot of emphasis on materials and their chemistry. But we’ve shown that fluid mechanics of the system matter a lot to get the most out of a great material when you integrate it appropriately.” 

Smith research group members Irwin Loud, Erik Reale and Paul Rozzi also contributed to the study. 

The U.S. Office of Naval Research, the National Science Foundation and the department of mechanical science and engineering at Illinois support this research. Smith also is affiliated with the Beckman Institute for Advanced Science and Technology at Illinois.  

Editor’s notes

To reach Kyle Smith, call 217-300-0928; email kcsmith@illinois.edu.

The paper “Embedded, micro-interdigitated flow fields in high areal-loading intercalation electrodes towards seawater desalination and beyond” is available online from the journal and arxiv. DOI: 10.1039/D3EE01302B

Read Next

Humanities Diptych image with book cover of "The New Internationals" and a headshot of English professor David Wright Faladé

English professor’s novel tells of love triangle in post-WWII Paris, based on his family history

CHAMPAIGN, Ill. — A new novel by University of Illinois Urbana-Champaign English professor David Wright Faladé tells the story of three people in a love triangle in post-World War II Paris. The characters in “The New Internationals” — a young French woman who has survived the Holocaust, a university student from West Africa and a […]

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010