Strategic Communications and Marketing News Bureau

Massive simulation shows HIV capsid interacting with its environment

CHAMPAIGN, Ill. — It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle.

The findings are reported in the journal Nature Communications.

“We are learning the details of the HIV capsid system, not just the structure but also how it changes its environment and responds to its environment,” said University of Illinois research scientist Juan R. Perilla, who led the study with U. of I. physics professor Klaus Schulten. Such details could help scientists find new ways to defeat the virus, Perilla said.

Schulten, who died in October 2016, pioneered the application of molecular dynamics simulations to study large biological systems. He called the method “computational microscopy.”

The capsid simulation was performed on the Department of Energy’s Titan supercomputer. Analyzing the data required a second supercomputer, Blue Waters, at the National Center for Supercomputing Applications at the U. of I.

This is a crocheted depiction of the protein structures that make up the HIV capsid. The identical proteins are arrayed in a series of pentamers, seen here in green, and hexamers, in orange, that together give the capsid its conical shape. A pore lies at the center of each grouping of proteins.

This is a crocheted depiction of the protein structures that make up the HIV capsid. The identical proteins are arrayed in a series of pentamers, seen here in green, and hexamers, in orange, that together give the capsid its conical shape. A pore lies at the center of each grouping of proteins.

The HIV capsid is made up of hundreds of identical proteins arrayed in a network of six-sided and five-sided structures, each with a tiny pore at its center. The capsid contains the virus’s genetic material, hiding it from host cell defenses. It also transports the virus to the cell nucleus, which it must infiltrate to complete infection.

The new study revealed several properties that likely enhance the capsid’s ability to sense its environment and find its way to the nucleus, Perilla said. It showed, for example, that different parts of the capsid oscillate at different frequencies. These oscillations likely transmit information from one part of the capsid to another, he said.

The study also revealed that ions flow into and out of the capsid pores. Negative ions accumulate on the positively charged surface inside the capsid, while positive ions adhere to the outside, which carries a negative charge.

“If you can break this electrostatic balance that the capsid is trying to keep together, you may be able to force it to burst prematurely,” Perilla said.

The positively charged interior also could help facilitate the influx of DNA building blocks. The virus needs these molecules from the host to convert its own RNA into DNA, Perilla said. These DNA building blocks, called nucleotides, carry a negative charge and are small enough to pass through the capsid’s pores, he said.

The researchers also found that stress propagates through the capsid in patterns. The stresses align in regions that experiments have shown are most susceptible to bursting.

These data reveal potential vulnerabilities that could be exploited to develop new drugs to defeat the HIV virus by targeting its capsid, Perilla said.

Perilla and Schulten are associated with the Beckman Institute for Advanced Science and Technology at the U. of I.

The National Science Foundation and the National Institutes of Health support this research.

Editor’s notes:
To reach Juan Perilla, call 217-244-7403; email jperilla@illinois.edu.
The paper “Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations” is available online and from the U. of I. News Bureau.
DOI: 10.1038/ncomms15959

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010