Strategic Communications and Marketing News Bureau

Low-cost fibers remove trace atrazine from drinking water

James Economy, left, a professor of materials science and engineering, and Illinois research scientist Zhongren Yue have developed a new generation of high surface-are porous materials for removing atrazine from water supplies.

James Economy, left, a professor of materials science and engineering, and Illinois research scientist Zhongren Yue have developed a new generation of high surface-are porous materials for removing atrazine from water supplies.

CHAMPAIGN, Ill. – A new generation of high surface-area porous materials for removing atrazine from water supplies has been developed by researchers at the University of Illinois at Urbana-Champaign. The low-cost and wear-resistant fibers also can remove the hazardous contaminants chloroform and trichloroethylene, both byproducts of the commonly used chlorine disinfection process.

“We’ve shown that we can remove all these impurities to well below the maximum contaminant levels established by the Environmental Protection Agency,” said James Economy, a professor of materials science and engineering at Illinois. “Having increased pore size and higher surface area, these fibers work much better than commercially available granulated activated carbon.”

Atrazine is one of the most widely used herbicides in the United States. More than 75 million pounds of atrazine are applied annually. Spread on farm fields and residential lawns to control weeds, atrazine can work its way into local waterways and municipal drinking supplies. Millions of Americans unknowingly ingest atrazine with their tap water.

“Because atrazine is toxic to humans, the Environmental Protection Agency has established a maximum concentration level of three parts per billion,” Economy said. “By tailoring the pore size and pore surface chemistry of our fibers, we can achieve this limit.”

To make their fibers, Economy and Illinois research scientist Zhongren Yue begin by coating fiberglass assemblies with a polymeric solution and a chemical activation agent. Then, under mild heat, the polymer cross-links, creating pores about 10-30 angstroms in size. By controlling the chemistry, the scientists are able to tailor the fibers for specific target molecules, such as atrazine.

“Our chemically activated porous fibers are nearly eight times more effective at removing atrazine to below EPA standards than commercially available activated carbon,” Economy said. “In fact, our fibers can remove atrazine to well below one part per billion. And our fibers can be easily regenerated under modest conditions.”

Yue will discuss the fibers and present the latest test results at the 228th American Chemical Society national meeting in Philadelphia. The technology has been patented.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010