Strategic Communications and Marketing News Bureau

Long-term nitrogen fertilizer use disrupts plant-microbe mutualisms

CHAMPAIGN, Ill. – When exposed to nitrogen fertilizer over a period of years, nitrogen-fixing bacteria called rhizobia evolve to become less beneficial to legumes – the plants they normally serve, researchers report in a new study.

Soil microbes known as rhizobia supply much-needed nitrogen to legumes such as clover (Trifolium species). In return, legumes shelter the rhizobia in nodules on their roots and provide them with carbon.

Soil microbes known as rhizobia supply much-needed nitrogen to legumes such as clover (Trifolium species). In return, legumes shelter the rhizobia in nodules on their roots and provide them with carbon.

These findings, reported in the journal Evolution, may be of little interest to farmers, who generally grow only one type of plant and can always add more fertilizer to boost plant growth. But in natural areas adjacent to farmland, where fertilizer runoff occurs, or in areas where nitrogen oxides from the burning of fossil fuels settle, a change in the quality of soil rhizobia could have “far-reaching ecological and environmental consequences,” the researchers wrote.

“The nitrogen that we apply to agricultural fields doesn’t stay on those fields, and atmospheric nitrogen deposition doesn’t stay by the power plant that generates it,” said University of Illinois plant biology professor Katy Heath, who led the study with Jennifer Lau, of Michigan State University. “So this work is not just about a fertilized soybean field. Worldwide, the nitrogen cycle is off. We’ve changed it fundamentally.”

Not that long ago, before the advent of industrial fertilizers and the widespread use of fossil fuels, soil nitrogen was a scarce commodity. Some plants, the legumes, found a way to procure the precious nitrogen they needed – from rhizobia.

“The rhizobia fix nitrogen – from atmospheric nitrogen that we’re breathing in and out all the time – to plant-available forms,” Heath said. “Plants can’t just take it up from the atmosphere; they have to get it in the form of nitrate or ammonium.”

In return, legumes shelter the rhizobia in their roots and supply them with carbon. This partnership benefits the bacteria and gives legumes an advantage in nitrogen-poor soils.

Previous studies have shown that nitrogen fertilizers can affect the diversity of species that grow in natural areas, Heath said. In areas polluted with fertilizer runoff, for example, legumes decline while other plants become more common.

In the new analysis, Heath and her colleagues looked at six long-term ecological research fields at Michigan State University’s Kellogg Biological Station. Two experimental plots were located in each of six different fields. One plot in each field had been fertilized with nitrogen for more than two decades; the other, a control plot, had never been fertilized.

The researchers isolated rhizobia from the nodules of legumes in fertilized and unfertilized plots. In a greenhouse experiment, they tested how these bacteria influenced legume growth and health. The researchers found that the plants grown with the nitrogen-exposed rhizobia produced 17 to 30 percent less biomass and significantly less chlorophyll than plants grown with rhizobia from the unfertilized plots.

A genetic analysis of the microbes revealed that the composition of the bacterial populations was similar between fertilized and unfertilized plots: The same families of rhizobia were present in each. But rhizobia from the fertilized plots had evolved in a way that made them less useful to the legumes, Heath said.

“This study tells us something about mutualisms and how they evolved,” she said. “Mutualisms depend on this balance of trade between the partners, this special nitrogen-carbon economy in the soil, for example. And when the economy changes – say when nitrogen is no longer scarce – these mutualisms might go away.”

The research team also included Dylan Weese, of Michigan State University and St. Ambrose University; and Bryn Dentinger, of the Royal Botanic Gardens, in Surrey, U.K.

The National Science Foundation supported this research.

To reach Katy Heath, call 217-265-5473; email kheath@illinois.edu. The paper, “Long-term nitrogen addition causes the evolution of less cooperative mutualists,” is available online or from the U. of I. News Bureau.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010