Strategic Communications and Marketing News Bureau

Lipid epoxides target pain, inflammatory pathways in neurons

CHAMPAIGN, Ill. — When modified using a process known as epoxidation, two naturally occurring lipids are converted into potent agents that target multiple cannabinoid receptors in neurons, interrupting pathways that promote pain and inflammation, researchers report. These modified compounds, called epo-NA5HT and epo-NADA, have much more powerful effects than the molecules from which they are derived, which also regulate pain and inflammation.

Reported in the journal Nature Communications, the study opens a new avenue of research in the effort to find alternatives to potentially addictive opioid pain killers, researchers say.

The work is part of a long-term effort to understand the potentially therapeutic byproducts of lipid metabolism, a largely neglected area of research, said University of Illinois Urbana-Champaign comparative biosciences professor Aditi Das, who led the study. While many people appreciate the role of dietary lipids such as omega-3 and omega-6 fatty acids in promoting health, the body converts these fat-based nutrients into other forms, some of which also play a role in the healthy function of cells, tissues and organ systems.

“Our bodies use a lot of genes for lipid metabolism, and people don’t know what these lipids do,” said Das, also an affiliate of the Beckman Institute for Advanced Science and Technology and of the Cancer Center at Illinois. “When we consume things like polyunsaturated fatty acids, within a few hours they are transformed into lipid metabolites in the body.”

Scientists tend to think of these molecules as metabolic byproducts, “but the body is using them for signaling processes,” Das said. “I want to know the identity of those metabolites and figure out what they are doing.”

She and her colleagues focused on the endocannabinoid system, as cannabinoid receptors on cells throughout the body play a role in regulating pain. When activated, cannabinoid receptors 1 and 2 tend to reduce pain and inflammation, while a third receptor, TRPV1, promotes the sensation of pain and contributes to inflammation. These receptors work together to modulate the body’s responses to injury or disease.

“Understanding pain regulation in the body is important because we know we have an opioid crisis,” Das said. “We’re looking for lipid-based alternatives to opioids that can interact with the cannabinoid receptors and in the future be used to design therapeutics to reduce pain.”

Previous research identified two lipid molecules, known as NA5HT and NADA, that naturally suppress pain and inflammation. Das and her colleagues discovered that brain cells possess the molecular machinery to epoxidize NA5HT and NADA, converting them to epo-NA5HT and epo-NADA. Further experiments revealed that these two epoxidated lipids are many times more potent than the precursor molecules in their interactions with the cannabinoid receptors.

“For example, we found that epo-NA5HT is a 30-fold stronger antagonist of TRPVI than NA5HT and displays a significantly stronger inhibition of TRPV1-mediated responses in neurons,” Das said. It inhibits pathways associated with pain and inflammation, and promotes anti-inflammatory pathways.

The team was unable to determine whether neurons naturally epoxidate NA5HT and NADA in the brain, but the findings hold promise for the future development of lipid compounds that can combat pain and inflammation without the dangerous side effects associated with opioids, Das said.

The Das research group collaborated with Hongzhen Hu, a pain and itch researcher and professor of anesthesiology at Washington University in St. Louis, and with U. of I. biochemistry professor Emad Tajkhorshid, who helped simulate how the lipids are metabolized by enzymes known as cytochrome P450s.

Tajkhorshid also is an affiliate of the Beckman Institute.

The National Institutes of Health support this research.

Editor’s notes

To reach Aditi Das, email aditidas@illinois.edu.  

The paper “Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel” is available from the U. of I. News Bureau.

DOI: 10.1038/s41467-021-20946-6

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010