Strategic Communications and Marketing News Bureau

Lighter gas reduces damage to optics in extreme ultraviolet lithography

David Ruzic, a professor of nuclear, plasma and radiological engineering, and colleagues have discovered a technique that may help pack more power into smaller computer chips.

David Ruzic, a professor of nuclear, plasma and radiological engineering, and colleagues have discovered a technique that may help pack more power into smaller computer chips.

CHAMPAIGN, Ill. – Researchers at the University of Illinois have discovered a way to generate light and reduce damage in a leading candidate for next-generation microelectronics lithography. The technique could help pack more power into smaller computer chips.

In the quest for creating computer chips with ever-smaller feature sizes, chip manufacturers are exploring extreme ultraviolet lithography as the next chip-printing technology. For a light source at the necessary wavelength, scientists have turned to a hot, ionized gas called a plasma, generated within a Z-pinch device. But, energetic ions produced in the plasma can damage the mirror responsible for collecting the light.

“By adding a lighter gas to the plasma, we can significantly reduce the damage and extend the lifetime of the collector optics,” said David Ruzic, a professor of nuclear, plasma and radiological engineering and lead author of a paper that describes the technique in the June issue of the journal IEEE Transactions on Plasma Science.

In a Z-pinch device, xenon is fed into a chamber where it collides with a stream of electrons, producing a low-temperature and low-density plasma. This plasma then flows between two cylindrical electrodes, one positioned inside the other. (The “Z” in Z-pinch refers to the direction of current flow along the cylindrical electrodes.)

Next, a large current pulse heats the plasma, while a magnetic field generated by the pulse compresses and confines the plasma. The plasma becomes hotter and denser until it “pinches,” creating the flash of light needed by the chip industry.

As the pulse passes, internal plasma pressure overcomes magnetic confinement, and the hot, dense plasma flies apart. The resulting fast and energetic ions can damage the delicate collector optics.

However, adding a small amount of a lighter gas, such as hydrogen, “significantly reduces both the number and the energy of xenon ions reaching the collector surface, thereby extending the collector’s lifetime while having a negligible effect on the extreme ultraviolet light production,” Ruzic said.

The reduction in xenon energy occurs because the hydrogen ions shield the xenon ions from the high electric field created by the plasma.

“When the plasma flies apart, the less-massive electrons move faster than the hydrogen and xenon ions,” Ruzic said. “The electric field induced by the moving electrons then pulls on the ions and accelerates them. Being much lighter than xenon ions, the hydrogen ions accelerate faster, and shield the xenon ions from some of the electric field.”

By absorbing some of the plasma’s energy, the hydrogen ions prevent the xenon ions from accelerating to the point where they damage the collector surface, thus prolonging the collector’s lifetime.

Xenon is actually the second-best radiator for light at the desired wavelength, Ruzic said. “We can get three times as much light from tin, but tin is a condensable metal and makes quite a mess on the mirrors. We are now looking at ways to clean the mirrors during chip production.”

With Ruzic, co-authors of the paper are U. of I. graduate students Keith Thompson and Josh Spencer, postdoctoral research associate Shailendra Srivastava, and former postdoctoral researcher associates Brian Jurczyk and Erik Antonsen.

Editor’s note: To reach David Ruzic, call 217-333-0332; e-mail: druzic@illinois.edu.

To view or subscribe to the RSS feed for Science News at Illinois, please go to: http://illinois.edu/lb/rss/608/text.xml.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010