Strategic Communications and Marketing News Bureau

Janus particles offer new physics, new technology

Steve Granick, a professor of materials science and engineering, of chemistry and of physics, has modified the surface of colloidal particles into a Janus chemical compound. "We can measure the rotational dynamics of single colloidal particles in suspension as well as at interfaces," Granick said. "We can also take advantage of the particles' two very dissimilar sides to create families of microsensors."

Steve Granick, a professor of materials science and engineering, of chemistry and of physics, has modified the surface of colloidal particles into a Janus chemical compound. “We can measure the rotational dynamics of single colloidal particles in suspension as well as at interfaces,” Granick said. “We can also take advantage of the particles’ two very dissimilar sides to create families of microsensors.”

CHAMPAIGN, Ill. – In Roman mythology, Janus was the god of change and transition, often portrayed with two faces gazing in opposite directions. At the University of Illinois at Urbana-Champaign, Janus particles are providing insight into the movement of molecules, and serving as the basis for new materials and sensors.

“By modifying the surface of colloidal particles into a Janus chemical compound, we can measure the rotational dynamics of single colloidal particles in suspension as well as at interfaces,” said Steve Granick, a professor of materials science and engineering, chemistry and physics. “We can also take advantage of the particles’ two very dissimilar sides to create families of microsensors.”

Using a metal-deposition technique, Granick and his research team – graduate students Liang Hong and Steven Anthony, and postdoctoral research associate Huilin Tu – make particles half-covered by metal, and generate geometrically symmetric but chemically asymmetric materials. Trapped inside the micron-size particles are fluorescent dyes, which can only be seen through the uncoated hemisphere, not through the metal-coated hemisphere.

“Because these colloidal particles are rotating, they twinkle as they move back and forth, ‘swimming’ by Brownian motion,” said Granick, who is also a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology. “By carefully monitoring the motion of the particles, we can now ask questions about that motion that were not possible before.”

Individual particles can be tied together like strings of pearls. Using precision imaging and tracking techniques, the researchers can measure the movement as the strings tumble around. The particles can also be used as microprobes and microrheometers.

“We are continuing to explore the chemical modification of the metal surface to form new colloid-based materials,” said Granick, who will describe his team’s work at the March Meeting of the American Physical Society, to be held at the Baltimore Convention Center, March 13-17. “We are also investigating the use of electrical fields and magnetic fields to manipulate the particles.”

The U.S. Department of Energy funded the work.

Editor’s note: To reach Steve Granick, call 217-333-5720; e-mail: sgranick@uiuc.edu.

Read Next

Agriculture Graduate student Andrea Jimena Valdés-Alvarado, left, and food science professor Elvira Gonzalez de Mejia standing in the Edward R. Madigan Laboratory holding samples of the legume pulses they used in the study.

Fermenting legume pulses boosts their antidiabetic, antioxidant properties

CHAMPAIGN, Ill. — Food scientists at the University of Illinois Urbana-Champaign identified the optimal fermentation conditions for pulses ― the dried edible seeds of legumes ― that increased their antioxidant and antidiabetic properties and their soluble protein content. Using the bacteria Lactiplantibacillus plantarum 299v as the microorganism, the team fermented pulses obtained from varying concentrations […]

Expert viewpoints Ukraine’s daring drone attack deep within Russia is significant but not war-redefining, and may hinder U.S. efforts to end the war, says University of Illinois Urbana-Champaign political science professor and international relations expert Nicholas Grossman.

Does Ukraine drone attack inside Russia augur new era of asymmetric warfare?

Champaign, Ill. — University of Illinois Urbana-Champaign political science professor Nicholas Grossman is the author of “Drones and Terrorism: Asymmetric Warfare and the Threat to Global Security” and specializes in international relations. Grossman spoke with News Bureau business and law editor Phil Ciciora about “Operation Spiderweb,” Ukraine’s expertly plotted drone attack inside the Russian mainland. […]

Behind the scenes Photo of a man with his leg lifted and his boot in the foreground, while another man in the foreground reacts.

Staging a fight

CHAMPAIGN, Ill. — A group of theatre students is gathered in a rehearsal room at Krannert Center for the Performing Arts at the University of Illinois Urbana-Champaign. They are each paired with a partner, and I watch as they shove each other in the chest, knee one another in the gut and then punch their […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010