Strategic Communications and Marketing News Bureau

Ionic liquid catalyst helps turn emissions into fuel

CHAMPAIGN, Ill. – An Illinois research team has succeeded in overcoming one major obstacle to a promising technology that simultaneously reduces atmospheric carbon dioxide and produces fuel.

Biofuel production (left) compared to fuel produced via artificial synthesis. Crops takes in CO2, water and sunlight to create biomass, which then is transferred to a refinery to create fuel. In the artificial photosynthesis route, a solar collector or windmill collects energy that powers an electrolyzer, which converts CO2 to a synthesis gas that is piped to a refinery to create fuel.

Biofuel production (left) compared to fuel produced via artificial synthesis. Crops takes in CO2, water and sunlight to create biomass, which then is transferred to a refinery to create fuel. In the artificial photosynthesis route, a solar collector or windmill collects energy that powers an electrolyzer, which converts CO2 to a synthesis gas that is piped to a refinery to create fuel.

University of Illinois chemical and biological engineering professor Paul Kenis and his research group joined forces with researchers at Dioxide Materials, a startup company, to produce a catalyst that improves artificial photosynthesis. The company, in the university Research Park, was founded by retired chemical engineering professor Richard Masel. The team reported their results in the journal Science.

Artificial photosynthesis is the process of converting carbon dioxide gas into useful carbon-based chemicals, most notably fuel or other compounds usually derived from petroleum, as an alternative to extracting them from biomass.

In plants, photosynthesis uses solar energy to convert carbon dioxide (CO2) and water to sugars and other hydrocarbons. Biofuels are refined from sugars extracted from crops such as corn. However, in artificial photosynthesis, an electrochemical cell uses energy from a solar collector or a wind turbine to convert CO2 to simple carbon fuels such as formic acid or methanol, which are further refined to make ethanol and other fuels.

“The key advantage is that there is no competition with the food supply,” said Masel, a co-principal investigator of the paper and CEO of Dioxide Materials, “and it is a lot cheaper to transmit electricity than it is to ship biomass to a refinery.”

However, one big hurdle has kept artificial photosynthesis from vaulting into the mainstream: The first step to making fuel, turning carbon dioxide into carbon monoxide, is too energy intensive. It requires so much electricity to drive this first reaction that more energy is used to produce the fuel than can be stored in the fuel.

The Illinois group used a novel approach involving an ionic liquid to catalyze the reaction, greatly reducing the energy required to drive the process. The ionic liquids stabilize the intermediates in the reaction so that less electricity is needed to complete the conversion.

The researchers used an electrochemical cell as a flow reactor, separating the gaseous CO2 input and oxygen output from the liquid electrolyte catalyst with gas-diffusion electrodes. The cell design allowed the researchers to fine-tune the composition of the electrolyte stream to improve reaction kinetics, including adding ionic liquids as a co-catalyst.

“It lowers the overpotential for CO2 reduction tremendously,” said Kenis, who is also a professor of mechanical science and engineering and affiliated with the Beckman Institute for Advanced Science and Technology. “Therefore, a much lower potential has to be applied. Applying a much lower potential corresponds to consuming less energy to drive the process.”

Next, the researchers hope to tackle the problem of throughput. To make their technology useful for commercial applications, they need to speed up the reaction and maximize conversion.

“More work is needed, but this research brings us a significant step closer to reducing our dependence on fossil fuels while simultaneously reducing CO2 emissions that are linked to unwanted climate change,” Kenis said.

Graduate students Brian Rosen, Michael Thorson, Wei Zhu and Devin Whipple and postdoctoral researcher Amin Salehi-Khojin were co-authors of the paper. The U.S. Department of Energy supported this work.

Editor’s note: To contact Paul Kenis, call 217-265-0523; email kenis@illinois.edu.
The paper, “Ionic Liquid–Mediated Selective Conversion of CO2 to CO
at Low Overpotentials,” is available online.

Read Next

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Arts Black and white photo of a grand piano sitting in a room with a brick wall lit by the sun in the background.

Krannert Art Museum exhibition shows midcentury modern homes as places for artistic production

CHAMPAIGN, Ill. — Several Champaign-Urbana homes designed by local architects between the 1940s and 1990s were also made as settings for artistic performances and cultural conversations. An exhibition at Krannert Art Museum at the University of Illinois Urbana-Champaign examines how four midcentury modern homes served as incubators for avant-garde culture in the community. “Making Place […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010