Strategic Communications and Marketing News Bureau

Injections, exercise promote muscle regrowth after atrophy in mice, study finds

CHAMPAIGN, Ill. — By injecting cells that support blood vessel growth into muscles depleted by inactivity, researchers say they are able to help restore muscle mass lost as a result of immobility.

The research, conducted in adult mice, involved injections of cells called pericytes (PERRY-sites), which are known to promote blood vessel growth and dilation in tissues throughout the body. The injections occurred at the end of a two-week period during which the mice were prevented from contracting the muscles in one of their hind legs.

“Just as the mice were becoming mobile again, we transplanted the pericytes and we found that there was full recovery of both muscle mass and the vasculature, too,” said University of Illinois kinesiology and community health professor Marni Boppart, who led the research. The mice that received the injections had significantly better improvement than those that regained mobility without the injections. Boppart is a researcher in the Beckman Institute for Advanced Science and Technology and in the Carle Illinois College of Medicine at Illinois.

The team also observed that muscle immobility itself led to a significant decline in the abundance of pericytes in the affected muscle tissues.

“This has never been documented before,” Boppart said.

The research is part of a long-term effort to understand the factors that contribute to the loss of muscle mass – in particular as a result of immobility.

“We know that if you are under a condition of disuse – for example, as a result of long-term bed rest, or the immobilization of a body part in a cast – you lose muscle mass,” Boppart said. “And even when you come out of that state of immobility and you start moving your muscles again, there’s this really long, slow process of recovery.”

Older adults might never fully rebuild the lost muscle mass after a period of immobility, she said.

“They can’t recover, they become disabled, and there’s this downward spiral,” Boppart said. “They may become institutionalized and experience early mortality.”

Researchers have long searched for clinical interventions that can help restore lost muscle mass and impaired function as a result of inactivity, Boppart said.

“To my knowledge, no one has demonstrated that anything has been effective in improving the recovery process,” she said. “We’re excited by the new findings because we hope to one day use these cells or biomaterials derived from these cells to help restore lost muscle mass,” particularly in elderly or disabled adults who are most likely to see a decline in their overall health as a result of the decline in muscle viability.

The team reports the new findings in The FASEB Journal.

The National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Heart, Lung, and Blood Institute of the U.S. National Institutes of Health supported this research.

Editor’s notes:

To reach Marni Boppart, call 217-244-1459; email mboppart@illinois.edu.  

The paper “Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization” is available online and from the U. of I. News Bureau.

DOI: 10.1096/fj.201802580R

Read Next

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Engineering Civil and Environmental Engineering Professor Nishant Garg, center, is joined by fellow researchers, from left: Yujia Min, Hossein Kabir, Nishant Garg, center, Chirayu Kothari and M. Farjad Iqbal, front right. In front are examples of clay samples dissolved at different concentrations in a NaOH solution. The team invented a new test that can predict the performance of cementitious materials in mere 5 minutes. This is in contrast to the standard ASTM tests, which take up to 28 days. This new advance enables real-time quality control at production plants of emerging, sustainable materials. Photo taken at the University of Illinois Urbana-Champaign on Monday, Feb. 3, 2025. (Photo by Fred Zwicky / University of Illinois Urbana-Champaign)

Researchers develop a five-minute quality test for sustainable cement industry materials

A new test developed at the University of Illinois Urbana-Champaign can predict the performance of a new type of cementitious construction material in five minutes — a significant improvement over the current industry standard method, which takes seven or more days to complete. This development is poised to advance the use of next-generation resources called supplementary cementitious materials — or SCMs — by speeding up the quality-check process before leaving the production floor.

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010