Strategic Communications and Marketing News Bureau

In new statistical approach, data decide model

Ping Ma, an Illinois professor of statistics, has developed a data-driven computational approach to reveal secrets about Earth's inner core as well as discover unique gene expressions in living organisms.

Ping Ma, an Illinois professor of statistics, has developed a data-driven computational approach to reveal secrets about Earth’s inner core as well as discover unique gene expressions in living organisms.

CHAMPAIGN, Ill. – A data-driven computational approach developed by a University of Illinois statistician is revealing secrets about inner Earth and discovering unique gene expressions in fruit flies, zebra fish and other living organisms.

“Using mathematical concepts from inverse scattering and modern statistics, we let the data ‘speak,’ and automatically generate an appropriate model,” said Ping Ma, a professor of statistics at the U. of I. and lead author of a paper describing the technique that has been accepted for publication in the Journal of Geophysical Research.

To study features deep within Earth, for example, Ma and colleagues first process the seismic data with a numeric technique called inverse scattering. Instead of beginning with a geophysical structure and calculating the scattering, the researchers use the scattered seismic waves to reconstruct the scattering structures.

In that initial step, the researchers develop a generalized Radon transform of global seismic network data to map thousands of seismograms to a set of multiple images of the same target structure.

“These ‘common image-point gathers’ reveal common structure among the messy seismic waves, and are the key notion that we exploit in the statistical development of the generalized Radon transform,” said Ma, who also is affiliated with the university’s Institute for Genomic Biology.

In the second step, the researchers use “mixed effects” statistical models to analyze the common image-point gathers and enhance the generalized Radon transform images.

The combined use of the generalized Radon transform and the mixed-effect statistical inference exploits the redundancy in the data and allows the transformation of vast volumes of network data to statistical estimates and quantitative analysis, Ma said.

In one recent application, Ma and colleagues at the Massachusetts Institute of Technology and Purdue University used the numeric technique to analyze seismic waves and infer the shape and temperature of Earth’s core-mantle boundary region. The researchers reported their findings in the March 30, 2007, issue of the journal Science.

The data-driven statistical methodology is not limited to analyzing seismic data. In computational biology, for example, Ma and colleagues have used the technique to discover unique patterns of gene expression in fruit flies and roundworms, to study differential gene expression of the retinal development in zebra fish, and to explore the effect of histone modifications on gene transcription rates in yeast.

The work was funded by the National Science Foundation.

Editor’s note: To reach Ping Ma, call 217-244-7095; e-mail: pingma@illinois.edu.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010