Cell phones bring spectroscopy to the classroom

Creative strategies used to fight increase in assaults

TRAFFIC ALERT: FRIDAY PARADE ROUTE
The UI homecoming parade will be from 6 to 7 p.m., Oct. 22. The route is identical to last year, beginning at Sixth Street and Taft Drive in Champaign, and then traveling through Campusplaza and turning south on Matthews Avenue in Urbana, and ending at the Quad.

Analyse this
UI chemistry professor Alexander Scheeline developed a cell-phone spectrometer for high school chemistry classes. He wrote free software that analyzes JPEG images taken by students’ cellular phones.

Traffic Alert: Friday Parade Route
The UI homecoming parade will be from 6 to 7 p.m., Oct. 22. The route is identical to last year, beginning at Sixth Street and Taft Drive in Champaign, and then traveling through Campusplaza and turning south on Matthews Avenue in Urbana, and ending at the Quad.

By Anna K. Herkamp
Physical Sciences Editor

U
I chemistry professor Alexander Scheeline wants to see high school students using their cell phones in class. Not for texting or surfing the Web, but as an analytical chemistry instrument.

Scheeline developed a method using a few basic, inexpensive supplies and a digital camera to teach the process of analyzing a sample. It is an important basic chemistry instrument. Spectrophotometry is one of the most widely used means for identifying and quantifying materials in both physical and biological sciences.

“If we want to measure the amount of protein in meat, or water in grain, or iron in blood, it’s done by spectrophotometry," Scheeline said.

Many schools have a very limited budget for instruments and supplies, making spectrometers cost-prohibitive for science classrooms. Even when a device is available, students fail to learn the analytical chemistry principles inherent in the instrument because most commercially available devices are enclosed boxes. Students simply insert samples and record the numbers the box outputs without learning the context or thinking critically about the process.

“Science is basically about using your senses to see things – it’s just that we’ve got so much technology that now it’s all hidden,” Scheeline said.

“The student gets the impression that a measurement is something that goes on inside a box, and it’s completely inaccessible, not understandable – the purview of expert engineers," he said. “That’s not what you want them to learn. In order to get across the idea, I can do it, and I can see it, and I can understand it, they’ve go to build the instrument themselves.”

So Scheeline set out to build a basic spectrometer that was not only simple and inexpensive but also open so that students could see its workings and play with its components, encouraging critical-thinking and problem-solving skills. It wouldn’t have to be the most sensitive or accurate instrument — in fact, he hoped that obvious shortcomings of the device would reinforce students’ understanding of its workings.

“If you’re trying to teach someone an instrument’s limitations, it’s a lot easier to teach them when they’re blatant than when they’re subtle. Everything goes wrong out in the open," he said.

In a spectrometer, white light shines through a sample solution. The solution absorbs certain wavelengths of light. A diffraction grating then spreads the light into its color spectrum like a prism. Analyzing that spectrum can tell chemists about the properties of the sample.

For a light source, Scheeline used a single-light-emitting-diode (LED) powered by a 3-volt battery, the kind used in key fobs to remotely unlock a car. Diffraction gratings and cuvettes, the small, clear reservoirs to hold sample solutions, are readily available from scientific supply companies for a few cents each. The entire setup cost less than $3. The limiting factor seemed to be in the light sensor, or photodetector, to capture the spectrum for analysis.

“All of a sudden this light bulb went off in my head: a photodetector that everybody already has! Almost everybody has a cell phone, and almost all phones have a camera," Scheeline said. “I realized, if you can get the picture into the computer, it’s only software that keeps you from building a cheap spectrophotometer.”

To remove that obstacle, he wrote a software program to analyze spectra captured in JPEG photo files and made it freely accessible online, along with its source code and instructions to students for assembling and using the cell-phone spectrometer. It can be accessed through the American Chemical Society's Digital Library.

Scheeline has used his cell-phone spectrometers in several classroom settings. His first classroom trial was with students in Hanoi, Vietnam, as part of a 2009 exchange teaching program Scheeline and several other UI chemistry professors participated in. Although the students had no prior instrumentation experience, they greeted the cell-phone spectrometers with enthusiasm.

In the United States, Scheeline used cell-phone spectrometers in an Atlanta high school science program in the summers of 2009 and 2010. By the end of the 45-minute class, Scheeline was delighted to find students grasping chemistry concepts that seemed to elude students in similar programs. Scheeline described the setup:

SPECTROMETER
Page 10

Analyze this UI chemistry professor Alexander Scheeline developed a cell-phone spectrometer for high school chemistry classes. He wrote free software that analyzes JPEG images taken by students’ cellular phones.

Traffic Alert: Friday Parade Route
The UI homecoming parade will be from 6 to 7 p.m., Oct. 22. The route is identical to last year, beginning at Sixth Street and Taft Drive in Champaign, and then traveling through Campusplaza and turning south on Matthews Avenue in Urbana, and ending at the Quad.

By Liz Ahlberg
Assistant Editor

Security cameras inside and out UI buildings, and inside Champaign-Urbana Mass Transit District buses are among the newest campus police tools.

And for good reason. "If criminals know there is a camera nearby, they’re not likely to assault you," said Barbara O’Connor, the UI executive director of public safety.

“If criminals know there is a camera nearby, they’re not likely to assault you," said Barbara O’Connor, the UI executive director of public safety.

“Science is basically about using your senses to see things — it’s just that we’ve got so much technology that now it’s all hidden,” Scheeline said.

“The student gets the impression that a measurement is something that goes on inside a box, and it’s completely inaccessible, not understandable — the purview of expert engineers," he said. "That’s not what you want them to learn. In order to get across the idea, I can do it, and I can see it, and I can understand it, they’ve got to build the instrument themselves.”

So Scheeline set out to build a basic spectrometer that was not only simple and inexpensive but also open so that students could see its workings and play with its components, encouraging critical-thinking and problem-solving skills. It wouldn’t have to be the most sensitive or accurate instrument — in fact, he hoped that obvious shortcomings of the device would reinforce students’ understanding of its workings.

“If you’re trying to teach someone an instrument’s limitations, it’s a lot easier to teach them when they’re blatant than when they’re subtle. Everything goes wrong out in the open," he said.

In a spectrometer, white light shines through a sample solution. The solution absorbs certain wavelengths of light. A diffraction grating then spreads the light into its color spectrum like a prism. Analyzing that spectrum can tell chemists about the properties of the sample.

For a light source, Scheeline used a single-light-emitting-diode (LED) powered by a 3-volt battery, the kind used in key fobs to remotely unlock a car. Diffraction gratings and cuvettes, the small, clear reservoirs to hold sample solutions, are readily available from scientific supply companies for a few cents each. The entire setup cost less than $3. The limiting factor seemed to be in the light sensor, or photodetector, to capture the spectrum for analysis.

“All of a sudden this light bulb went off in my head: a photodetector that everybody already has! Almost everybody has a cell phone, and almost all phones have a camera," Scheeline said. “I realized, if you can get the picture into the computer, it’s only software that keeps you from building a cheap spectrophotometer.”

To remove that obstacle, he wrote a software program to analyze spectra captured in JPEG photo files and made it freely accessible online, along with its source code and instructions to students for assembling and using the cell-phone spectrometer. It can be accessed through the American Chemical Society's Digital Library.

Scheeline has used his cell-phone spectrometers in several classroom settings. His first classroom trial was with students in Hanoi, Vietnam, as part of a 2009 exchange teaching program Scheeline and several other UI chemistry professors participated in. Although the students had no prior instrumentation experience, they greeted the cell-phone spectrometers with enthusiasm.

In the United States, Scheeline used cell-phone spectrometers in an Atlanta high school science program in the summers of 2009 and 2010. By the end of the 45-minute class, Scheeline was delighted to find students grasping chemistry concepts that seemed to elude students in similar programs. Scheeline described the setup:

SPECTROMETER
Page 10

Analyze this UI chemistry professor Alexander Scheeline developed a cell-phone spectrometer for high school chemistry classes. He wrote free software that analyzes JPEG images taken by students’ cellular phones.

Traffic Alert: Friday Parade Route
The UI homecoming parade will be from 6 to 7 p.m., Oct. 22. The route is identical to last year, beginning at Sixth Street and Taft Drive in Champaign, and then traveling through Campusplaza and turning south on Matthews Avenue in Urbana, and ending at the Quad.

By Liz Ahlberg
Assistant Editor

Security cameras inside and out UI buildings, and inside Champaign-Urbana Mass Transit District buses are among the newest campus police tools.

And for good reason. "If criminals know there is a camera nearby, they’re not likely to assault you," said Barbara O’Connor, the UI executive director of public safety.

“If criminals know there is a camera nearby, they’re not likely to assault you," said Barbara O’Connor, the UI executive director of public safety.

“Science is basically about using your senses to see things — it’s just that we’ve got so much technology that now it’s all hidden,” Scheeline said.

“The student gets the impression that a measurement is something that goes on inside a box, and it’s completely inaccessible, not understandable — the purview of expert engineers," he said. "That’s not what you want them to learn. In order to get across the idea, I can do it, and I can see it, and I can understand it, they’ve got to build the instrument themselves.”

So Scheeline set out to build a basic spectrometer that was not only simple and inexpensive but also open so that students could see its workings and play with its components, encouraging critical-thinking and problem-solving skills. It wouldn’t have to be the most sensitive or accurate instrument — in fact, he hoped that obvious shortcomings of the device would reinforce students’ understanding of its workings.

“If you’re trying to teach someone an instrument’s limitations, it’s a lot easier to teach them when they’re blatant than when they’re subtle. Everything goes wrong out in the open," he said.

In a spectrometer, white light shines through a sample solution. The solution absorbs certain wavelengths of light. A diffraction grating then spreads the light into its color spectrum like a prism. Analyzing that spectrum can tell chemists about the properties of the sample.

For a light source, Scheeline used a single-light-emitting-diode (LED) powered by a 3-volt battery, the kind used in key fobs to remotely unlock a car. Diffraction gratings and cuvettes, the small, clear reservoirs to hold sample solutions, are readily available from scientific supply companies for a few cents each. The entire setup cost less than $3. The limiting factor seemed to be in the light sensor, or photodetector, to capture the spectrum for analysis.

“All of a sudden this light bulb went off in my head: a photodetector that everybody already has! Almost everybody has a cell phone, and almost all phones have a camera," Scheeline said. “I realized, if you can get the picture into the computer, it’s only software that keeps you from building a cheap spectrophotometer.”

To remove that obstacle, he wrote a software program to analyze spectra captured in JPEG photo files and made it freely accessible online, along with its source code and instructions to students for assembling and using the cell-phone spectrometer. It can be accessed through the American Chemical Society's Digital Library.

Scheeline has used his cell-phone spectrometers in several classroom settings. His first classroom trial was with students in Hanoi, Vietnam, as part of a 2009 exchange teaching program Scheeline and several other UI chemistry professors participated in. Although the students had no prior instrumentation experience, they greeted the cell-phone spectrometers with enthusiasm.

In the United States, Scheeline used cell-phone spectrometers in an Atlanta high school science program in the summers of 2009 and 2010. By the end of the 45-minute class, Scheeline was delighted to find students grasping chemistry concepts that seemed to elude students in similar programs. Scheeline described the setup:
Physicist named Packard Fellow in science and engineering

By Liz Ahlberg

Physical Sciences Editor

U

niversity physics professor Benjamin Lev has been named a Packard Fellow in science and engineering. He is among 17 early career researchers named as 2010 Packard Fellows, along with Lucille Packard Foundation in 2010 for outstanding creative re...

CRIME

CONTINUED FROM PAGE 1

Campus police have a strong part...

there have been no arrests as a res...

There have been no arrests as a re...

Ruth H. Bennett, 94, died Oct. 10 at the Gibson Area Hospital, Gibson City. She worked in admissions and records for 24 years, retiring in 1984 as chief clerk. Members: American Cancer Society, 3 Henson Place, Champaign, IL 61820. Memorial: Faith in Action, 121 N. State St., Monticello, IL 61856. Contributions: Champaign County Humane Society, 1989 as an administrative clerk for the administra...

Curriculum

Insideillinois

Oct. 21, 2010

insideillinois accepts advertising, Ad sizes are full, half, quarter and one-eighth page. Inside Illinois also will accept pre-printed ads. Ad copy deadline is one week prior to publication date. Enlarged photos are due by 4 p.m. one week prior to the publication date. A multiple insertion discount is available. For rates and ad dimensions, contact the editor or visit insideillinois on the Web.

http://news.illinois.edu/II
Six international centers awarded grants totaling $14.7 million

By Craig Chamberlain

Six UI centers dealing with international areas and issues have received $14.7 million in federal grants to continue their programs through the current and next three academic years (2010-2014).

The six Title VI grants, awarded recently by the U.S. Department of Education, are funding five campus centers designated as National Resource Centers – East Asian Studies; Latin American and Caribbean Studies; Global Studies; Russian, East European and Eurasian Studies; European Union Studies – as well as the Center for International Business Education and Research.

The centers support international curricula, library collections and conferences, and provide outreach to local and regional K-12 educators related to their world region. Hundreds of faculty members from departments across the Illinois campus are affiliated with one or more of these centers.

The grants for the five National Resource Centers include funding for Foreign Language and Area Studies Fellowships, which support graduate and undergraduate study in modern foreign languages in combination with area or international studies. In addition to languages such as French, German and Spanish, these fellowships can cover costs for learning what are designated “less commonly taught languages,” such as Hindi, Korean, Quechua, Turkish and others.

“These six grants reaffirm Illinois’ standing as one of the leaders in international and area studies,” said Wolfgang Schöf, interim associate provost for international affairs.

“The funding that comes with these grants will allow us to further strengthen our international curriculum and support students who want to achieve foreign language proficiency,” Schöf said. “It also will help us to share our international expertise with the community.”

The five National Resource Centers are jointly contained within the College of Liberal Arts and Sciences and International Programs and Studies, while CIBER is a joint program of the College of Business and IPS.

“Title VI was introduced as a part of the National Defense Education Act in 1958 as a means of promoting language development, with a focus on less commonly taught languages. Today, National Resource Centers, Foreign Language and Area Studies Fellowships, and International Research and Studies remain central programs in the Title VI array, evolving and expanding what they focus on in reaction to and in anticipation of global trends and security needs.”

Ad removed for online version
Teaching, research clinic also provides critical hearing services

By Anna K. Herkamp
Assistant Editor

For many years, the causes of tinnitus— a phantom sound heard by patients when there is no external source— were misunderstood. But in today’s modern laboratories— including those at the UI — researchers study the causes of hearing disorders with sophisticated equipment, and because of their efforts, therapies are becoming more comprehensive.

“Now we know there are physiological and genetic factors involved in such disorders,” said David Gooler, an instructor and researcher in the department of speech and hearing science in the UI College of Applied Health Sciences.

The research and clinical practices of speech and hearing science allow the world to know that causes of speech, language and hearing disorders are varied, and most important, treatable.

The Audiology Clinic, in the basement of the Speech and Hearing Science Building at Sixth and Daniel streets, is a state-of-the-art facility with equipment devoted to helping people hear better through service, research and education. Its sister clinic in the Research Park, the Speech-Language Pathology Clinic, provides services, educates students and conducts research on speech and language disorders.

Recent renovation has better equipped the Audiology Clinic to educate students to provide clinical diagnostic, consultative and treatment services for people with communicative disorders. The clinic also provides a modern laboratory for the study of communication challenges. Licensed audiologists with assistance from graduate students are responsible for providing diagnostic, consultative, rehabilitative and hearing conservation services.

In 2009, the clinic recorded 900 patient visits. Patients who visit the clinic often say they wish they had gotten help earlier, Gooler said.

“Many people wait a long time before coming in for help simply because their hearing may have changed slowly, and they didn’t recognize the need,” he said. “Typically a family member recognizes the degree of difficulty and encourages them to seek some help, and very often the individual will say, ‘I wish I’d come in 10 years ago.’”

People (who learn effective communication strategies and use hearing aids) express that they have much more energy at the end of the day because they’re not working so hard to understand what everyone is saying to them. We hear that people are surprised at how much more effectively they can communicate.

A center for clinical treatment and research, the Audiology Clinic has a two-fold mission, according to Gooler.

“We’re really looking at a mission that includes service to not only the campus but also to the community, with a combined education and research component as well,” he said.

One example of patients becoming involved in research is in clinical studies of the neural basis of tinnitus.

“It’s quite important because that would give us an idea of how to address therapies,” Gooler said.

“Work that is originating out of (UI professor Fatima Husain’s) lab looks at behavioral evaluation of the tinnitus perception,” he said.

The research evaluates how patients perceive their problem, and whether their own perception of the disorder affects how they respond to the phantom sound, he said.

Patients with the disorder report a wide spectrum of problems, which can range from simply being uncomfortable in quiet rooms to not being able to sleep at night or concentrate at work.

Current research on tinnitus shows that the ear may not generate the disorder alone but that it’s due to changes in the way the brain responds, Gooler said.

“Treatments and therapies are not removing the perception of the sound, but instead are geared toward changing the person’s response to that perception,” Gooler said.

Another study from the lab of UI professor Charissa Lansing focuses on the influence of visual cues and memory on listening in background noise. Often, people with hearing loss have more difficulty in understanding speech when background noise is present because it masks speech sounds, Gooler said.

The clinic’s renovations have made way for improved equipment to better serve the needs of clients.

“We have made improvements in our ability to evaluate hearing-aid performance, and some of the new equipment has allowed us to provide students with a state-of-the-art set of equipment so that they’re ready to go out and be leaders once they’ve graduated,” Gooler said.

Patients also greatly benefit from the updated tools, he said.

“It allows us to evaluate the performance of the hearing aid and make modifications of the programming while the client is listening, whereas before it was a multistep procedure,” he said.

The clinic also has updated equipment for storing data. For example, clinicians can record images of the ear canal and ear drum with a tiny video camera and obtain high-resolution images, which can then be stored and transmitted more easily, Gooler said.

Besides video, the clinic educates students and professionals for careers in the field, the department of speech and hearing science educates students about communication sciences and disorders.

The department has 275 undergraduates and 20 clinical doctoral students and nine PhD students, Gooler said. There are 52 students in the master’s in speech-language pathology program.

Those who graduate with a clinical doctorate can practice autonomously, or often work in a hospital or university clinic. Others go into industry and perform research or help to create products that protect hearing in various industrial settings. Opportunities also exist in educational audiology.

Improving quality of life

Carol Parker, left, an audiologist in the department of speech and hearing sciences’ Audiology Clinic, demonstrates equipment that tests hearing aids with graduate student Ashley Charnuk. “(Our updated equipment) allows us to evaluate the performance of the hearing aid and make modifications of the programming while the client is listening,” said David Gooler, a researcher in the department of speech and hearing science.

Modern clinic

David Gooler, an instructor and researcher in the department of speech and hearing science, says recent renovation has better equipped the Audiology Clinic to educate students to provide clinical diagnostic, consultative and treatment services for people with communicative disorders. The clinic also provides a modern laboratory for the study of communication challenges.

Ad removed for online version

Audiology Clinic Open House
13 a.m.-2 p.m. Oct. 22

Learn more about the clinic and the services offered.

Speech and Hearing Science Building

CONCERNED ABOUT HAVING A HEARING PROBLEM?

Anyone may make an appointment at the Audiology Clinic.

Hours: Monday-Friday, 8:30 a.m.-4:30 p.m.

Appointments: 217-333-2230

ON THE WEB: http://go.illinois.edu/audiologyclinic
Bush tax cuts

A Minute With …™ UI expert Don Fullerton

Editor’s note: With Bush-era income-tax rates set to expire, Democrats want to return the rates that high-earners pay from 33 and 35 percent to Clinton-era levels of 36 and 39.6 percent. Republicans counter that raising taxes during a recession would bring an already sluggish economy to a standstill. Finance professor Don Fullerton, a former deputy assistant secretary of the U.S. Treasury Department who studies tax policy issues at the UI Institute of Government and Public Affairs, discusses the potential impact in an interview with News Bureau reporter Phil Ciciora.

A lot of the discussion relates to the business cycle and recession, but I think that discussion is misplaced. No extra stimulus is provided by cutting taxes on the rich more than on the poor. The real issue here is distributional fairness – who ought to bear more or less of the tax burden – and that’s a topic about which politicians do not have any special expertise. Whether we should take more or less from the rich or from the poor or middle class is an issue of social justice rather than economic policy.

And those questions of social justice don’t have anything to do with the recession. More important for the recession is whether to cut tax rates, or to increase government spending, or to provide some other temporary tax relief. Some of the suggestions would temporarily allow businesses to expense investments immediately instead of taking depreciation deductions over time. All of those topics are mixed together in this debate.

Advocates for sun-setting the tax cuts argue that taking taxes back to Clinton-era levels for those making more than $250,000 might actually stimulate growth by decreasing our deficit. Proponents of keeping the rates the same say raising taxes during a recession would cause consumer spending and investment to dry up.

Which side is correct?

The semantics here are somewhat confused. We’re not really raising taxes relative to current law; maintaining current law means that the rates will rise at the end of 2010. That is the law passed during the Bush administration, namely, that rates would fall for 10 years and then rise again.

However you want to frame the argument, allowing higher rates just on those making more than $250,000 is not a huge tax increase that would injure the recovery or extend the recession. By the same token, taking a bit more from the rich by letting their tax cuts expire – that alone won’t cut the deficit or make the recession any better. It’s just not going to have that huge of an impact. More impact on the recession would be provided by other options, such as extending unemployment compensation, stimulus spending on infrastructure, or faster depreciation deductions.

A lot of this debate is coming to a head, obviously, because of the midterm elections. Maybe some of these choices should have been made earlier, in the original stimulus bill. And if Congress does nothing, then all the tax cuts will expire, with a large impact that might slow the economy. But if politicians agree on keeping most of those tax cuts, then I don’t think our hopes of revitalizing the economy depend on keeping all of them.

One of the arguments for extending the Bush tax cuts or even making them permanent is that businesses and individuals need tax certainty, Is that a valid argument?

No, I think that’s wrong. Right now things are uncertain, but that uncertainty could be resolved by making any tax rates permanent. It doesn’t mean the lower rates must be made permanent.

It was the original tax bill 10 years ago that provided this uncertainty. In that bill, Congress played a cheap trick. The bill was written to make the budget numbers look better than they really were. Politicians wanted to cut tax rates, for political reasons, but they didn’t want to appear irresponsible by causing a long run budget deficit with huge fiscal problems down the line. So they decided to have their cake and eat it, too, by enacting a tax cut that would expire in 10 years. The tax cut gave them the political gains they wanted, and providing for the expiration of those tax cuts would make the long run budget look good. Yet nobody ever really thought that the politicians who come along later would allow all those tax cuts to expire! So, those earlier politicians could get their own political gains from the tax cut, and appear to be fiscally responsible, but they left the later politicians between a rock and a hard place. Current politicians now must hurt themselves by allowing the tax cuts to expire, or else hurt themselves by adding to the huge budget deficit.

In other words, the decision 10 years ago was cynical, and it was completely disingenuous; they passed a law saying the tax cuts would expire, but they knew the tax cuts would not expire. It’s a Ponzi scheme. Didn’t Bernie Madoff go to jail for that? ☺
NEW faces 2010

Jayadev Athreya
assistant professor of mathematics, College of Liberal Arts and Sciences

Education: Ph.D. (mathematics), M.S. (mathematics), University of Chicago; B.S. (mathematics) Iowa State University

Research interests: “I study how various geometric objects (like tiltings of the plane) change under certain types of stretching and shearing deformations. My work also relates to number theory and non-Euclidean geometry,” Athreya said. “His work is absolutely fundamental and can be applied equally effectively to the study of the dynamics of billiards as well as to non-geometric areas of core mathematics such as number theory,” said Sheldon Katz, the head of mathematics at Illinois. “These problems are central to a diverse collection of areas of mathematics and their applications. The mathematics department is excited and proud to have Athreya joining its ranks. His expertise and broad interests will bring together faculty members and students. Moreover, his infectious enthusiasm for mathematics will benefit all students with whom he has contact.”

Teaching at Illinois: Math 402, “Non-Euclidean Geometry”

Why Illinois? “I chose to come to Illinois because it has one of the best, most vibrant mathematics departments in the world,” Athreya said. “There is an extremely active seminar calendar, and in addition to all the great people we have here, we also attract terrific visitors and speakers every week. The department also takes teaching very seriously, and does a great job with it. I’m really excited to be a part of that.”

Dawn Trussell
assistant professor of recreation, sport and tourism, College of Applied Health Sciences

Education: Ph.D. (recreation and leisure studies), M.A. (recreation and leisure studies), University of Waterloo, Ontario; B.E. (physical education) Queen’s University, Kingston, Ontario; B.A. (physical education), Wilfrid Laurier University, Waterloo, Ontario.

Research interests: Her research program uses leisure experiences to understand diverse social contexts and issues of power and social inclusion, particularly as they relate to the constructs of gender, family, social class and age. She also has a keen interest in methodological and ethical issues in the research process when working with vulnerable and socially marginalized populations, such as children, youth and those living in poverty. “She is exceptionally bright and capable and is clearly on the pathway toward a highly successful academic career,” said Cary McDonald, the head of the department of recreation, sport and tourism. “We were very fortunate to attract an individual with her abilities and passion for her work. Most importantly, she wants to ensure that her research makes a difference.”

Why Illinois? “The recreation, sport and tourism department has world-class scholars in the areas of diversity, leisure behavior and sports, and I saw my research interests complementing its strengths,” Trussell said. “The spirit and enthusiasm of the college and the international reputation of the UI in qualitative methodologies and the opportunity to meet colleagues across campus were important factors in my decision.”
book corner

How to achieve balance in your life

By Robert Kisting
News Bureau Intern

Juggling the demands of being a faculty member, as well as trying to find time for yourself and family and friends can seem overwhelming. “The Joyful Professor” (Henschel Haus, 2010), by Barbara Minsker, a professor of environmental and water resources systems engineering, provides tips for balancing the many roles of researcher, teacher, coach and mentor, while maintaining a healthy personal life.

“After three years of leadership development training and 14 years as a professor, I had learned a lot that I thought would help the many over-stressed faculty members I see around me every day,” Minsker said. “I felt compelled to share (this information) and hoped that it would contribute to helping others transform their lives toward a more joyful and sustainable career path.”

The book guides readers through a step-by-step process to focus on the most critical actions to meet their needs – both professional and personal. By simplifying their lives, they have more time to focus on these essentials, weeding out or delegating the rest. “There are many time-management books out there,” Minsker said. “But what’s unique about this approach is that it helps readers identify their life vision and their most critical ‘soulful’ values. Identifying these values helps in focusing both personal and professional projects and goals in a way that brings true passion and joy, rather than the endless list of ‘shoulds’ that offer little inspiration.”

Minsker feels that any professor can benefit from her book: “From new assistant professors who are trying to establish their careers and are often juggling that with the challenge of parenthood, to emeritus professors who may be trying to figure out how to create a meaningful and joyful retirement, if you find the academic lifestyle overwhelming or just wish that you could find a more joyful life, this is the book for you.”

ON THE WEB: http://henschelhausbooks.com/

On the Web: http://henschelhausbooks.com/

Colonial black women: What is freedom?

By Robert Kisting
News Bureau Intern

They baked New England’s Thanksgiving pies, preached their faith to crowds of worshippers, spied for the patriots during the American Revolution, wrote that human bondage was a sin, and demanded reparations for slavery.

In “Love of Freedom: Black Women in Colonial and Revolutionary New England” (Oxford University Press, 2009), Elizabeth H. Pleck, a UI professor of history and of African American studies, and Catherine Adams, a professor of history at the State University of New York at Geneseo, explore how black women in colonial and revolutionary New England sought not only legal emancipation from slavery but also defined freedom more broadly to include spiritual, familial and economic dimensions.

“Our aim was to show the assumptions about family, masculinity and femininity embedded in black women’s love of freedom, the meaning of freedom for both black women and men, and the significance of gender in the development of the free black community right after emancipation from slavery,” Pleck said. “We show how marriage and slavery combined to circumscribe freedom for many black women – that women were both vulnerable and resilient.”

Pleck believes the book is essential for students interested in African American and women’s history as well as people interested in the history of New England. “The book is important because we show that many black women understood freedom in terms of male dominance of the family and community, not in terms of equality between the sexes,” she said.

“We want people to know that black women fought for their freedom, but the way they defined it was shaped by distinctive features of slavery in New England.”

By Diana Yates

Long-extinct passenger pigeon finds a place in the family tree

With bits of DNA extracted from century-old museum specimens, researchers have found a place for the extinct passenger pigeon in the family tree of pigeons and doves, identifying for the first time this unique bird’s closest living avian relatives.

The new analysis, which appears this month in Molecular Phylogenetics and Evolution, reveals that the passenger pigeon was most closely related to other North and South American pigeons, and not to the mourning dove, as was once suspected.

Naturalists have long lamented that one of North America’s most spectacular birds was also one of the first to be driven to extinction. In the early 1800s it was the most abundant bird species on the planet, even though its range was limited to the eastern and central forests of the United States and parts of eastern Canada. Flocks of passenger pigeons were so vast they darkened the sky; it could take days for a flock to pass overhead.

“It must have been unbelievable to see one of these flocks,” said Kevin Johnson, an ornithologist with the Illinois Natural History Survey at the University of Illinois, led a genetic study that placed the extinct passenger pigeon in the family tree of pigeons and doves.

The researchers first analyzed the available gene sequences of the passenger pigeon to those of its relatives to find its place in that tree. Both approaches placed the passenger pigeon on the same place in the tree.

Prior to this study, some believed that the passenger pigeon was most closely related to the mourning dove, a smaller species that also has a relatively long tail. Johnson said. (There are more than 300 species of pigeons and doves, Johnson and his colleagues compared sequences from two of its mitochondrial genes with those of 78 species of pigeons and doves from around the world. (There are more than 300 species of pigeons and doves worldwide.)

“We had two sequences from the mitochondrial genome, which is a separate organelle in the cell that has its own genome,” Johnson said. Mitochondrial genes are plentiful and so are easier to sequence, he said. And the mitochondrial genome evolves more rapidly than the nuclear genome, making it a good target for evolutionary studies.

The researchers first analyzed the available sequence data for all (extant and extinct) pigeons and doves together. Then they focused only on the living species, for which much more genetic information is available. They built a family tree of all living pigeons and doves, and then compared the available gene sequences of the passenger pigeon to those of its relatives to find its place in that tree. Both approaches placed the passenger pigeon on the same place in the tree.

To find the passenger pigeon’s place in the evolutionary history of pigeons and doves, Johnson and his colleagues compared sequences from two of its mitochondrial genes with those of 78 species of pigeons and doves from around the world.

Research about wind farms could lead to expanding their use

Wind power is likely to play a large role in the future of sustainable, clean energy, but wide-scale adoption has remained elusive. Now, researchers have found wind farms’ effects on local temperatures and proposed strategies for mitigating those effects, increasing the potential to expand wind farms to a utility-scale energy resource.

Led by UI professor of atmospheric sciences Somnath Baidya Roy, the research team will publish its findings in the Proceedings of the National Academy of Sciences. The paper appeared in the journal’s Online Early Edition in September.

Roy first proposed a model describing the local climate impact of wind farms in a 2004 paper. But that and similar subsequent studies have been based solely on models because of a lack of available data. In fact, no field data on temperature were publicly available for researchers to use, until Roy met Neil Kelley at a 2009 conference. Kelley, a principal scientist at the National Wind Technology Center, part of the National Renewable Energy Laboratory, had collected temperature data at a wind farm in San Gorgonio, Calif., for more than seven weeks in 1989.

Analysis of Kelley’s data corroborated Roy’s modeling studies and provided the first observation-based evidence of wind farms’ effects on local temperature. The study found that the area immediately surrounding turbines was slightly cooler during the day and slightly warmer at night than the rest of the region.

As a small-scale modeling expert, Roy was most interested in determining the processes that drive the daytime cooling and nocturnal warming effects. He identified an enhanced vertical mixing of warm and cool air in the atmosphere in the wake of the turbine rotors. As the rotors turn, they generate turbulence, like the wake of a speedboat motor. Upper-level air is pulled down toward the surface while surface-level air is pushed up, causing warmer and cooler air to mix.

The question for any given wind-farm site then becomes, will warming or cooling be the predominant effect?

“IT depends on the location,” Roy said.

“For example, in the Great Plains region, the winds are typically stronger at night, so the nocturnal effect may dominate. In a region where daytime winds are stronger— for example a sea breeze—then the cooling effect will dominate. It’s a very location-specific thing.”

Many wind farms, especially in the Midwestern United States, are located on farm land. According to Roy, the nocturnal warming effect could offer farm land some measure of frost protection and may even slightly extend the growing season.

Understanding the temperature effects and the processes that cause them also allows researchers to develop strategies to mitigate wind farms’ impact on local climate.

The second mediation strategy is local.

“Turbulence from the rotors has much less consequence in an already turbulent area,” Roy said. This is why wind farms are more commonly installed in open landscapes with enhanced turbulence, like the Great Plains.

Less Impact

The researchers used a global data set to identify regions such as the Midwest where temperature effects of large wind farms are likely to be low because of natural mixing in the atmosphere, providing ideal sites.
By Sharita Forrest
News Bureau Editor

Last spring, Ashley Ford was only a few classes away from graduating with a degree in theoretical and applied mechanics when an impulsive decision to accompany a roommate to a class in the School of Social Work changed her life.

“I knew for a long time that I didn’t necessarily see engineering as a satisfying career,” said Ford, a senior from Pecora, Ill.

“While I was good at it, I didn’t really have a passion for it, so I always wondered what I was going to do with that sort of degree.”

Although Ford had never envisioned herself in a helping profession — “I always thought I was too awkward,” she said — during her senior year in a peace of physics, she realized that she had stumbled upon her calling. When the class let out, Ford made a beeline to the school’s administrative office to see about changing her major to social work.

Call it fate or good fortune, Ford’s wake-up call was well timed. The school was preparing to reinstate its bachelor’s of social work degree program after budgetary constraints had forced the school to suspend it a decade earlier.

The School of Social Work reopened the BSW program in 2009, after a needs assessment indicated a strong demand for it based upon student interest and societal and employment trends, said Brenda Coble Lindsey, the director of the BSW program and a faculty member in the school.

Social Work reopened bachelor’s degree program

Exercise helps ‘understand what poverty feels like’

By Sharita Forrest
News Bureau Editor

It was a difficult month for 30-year-old Emily Epperman. She was unemployed, and her husband abruptly abandoned her and their two teenagers, leaving her with a pile of debts, $20 and two bus tokens. On the way to pawn the family’s TV, she was robbed and the set was stolen. At the welfare office, she battled bureaucracy and indifference in her ill-fated attempt to obtain food stamps and public assistance. Before the month was up, her employment benefits, and, like Emily Epperman, were forced to scramble to support his family among the eight represented by the family.

Some students, such as Ford, were drawn to social work through fulfilling experiences helping others. In the process of recovering from a severe anxiety disorder, Ford ran a self-help group for adolescent girls. Additionally, she also had shared in her family’s caregiving for her grandmother, as she slowly succumbed to Alzheimer’s disease.

Relatives who work in helping professions inspired other students, such as Abby Olson, of Chicago, who sometimes assists her mother in working with special-needs children from immigrant families.

Melissa Reiman, a 20-year-old junior from Lombard, Ill., grew up emulating her father, a police officer who conducted Drug Abuse Resistance Education programs for youth in the community — and sometimes recruited his daughters to serve as his audience while he rehearsed his presentations.

Don tile second year of the BSW program, students must complete a one-semester full-time field placement at a community agency or organization related to their area of interest. Service learning components in various courses also provide opportunities for students to work with clients and address real-life problems.

Earning the BSW degree, which prepares students for generalist social work practice or work in fields such as communications, health care, human resources and public service, enables students to enter graduate social work programs with advanced standing.

The School of Social Work, which celebrated its 60th anniversary in 2006, graduates about 120 students each year. The school was one of the first in the U.S. to offer advanced degrees in the field.
that we teach in class,” said Earls Larrison. Exercises like the poverty simulation can be emotionally moving experiences that give students insight into their potential clients, said Tara Earls Larrison, a social work educator for 15 years. “We have them do all kinds of experimental learning activities that are hands on and interactive, and help them understand, in different avenues, the concepts and issues that we teach in class,” said Earls Larrison. Earlier in the week, the class engaged in a privilege walk, an exercise that illustrated how privileges and negative experiences – such as getting an education or being discriminated against – move people ahead in life or set them back. Accordingly, a values exercise requires students to prioritize a list of clients and decide who will receive financial assistance with their health care needs and who won’t. An empathy exercise gives students a simulated disability for a short time so they can experience the challenges that people with disabilities face each day. According to Linda Kinergy, an adjunct instructor in social work who also is a child welfare investigator for a state agency, the first rule of working with clients is “to respect those we serve.”

“Passionate” is a word that comes up a lot when the BSW students share their feelings about helping others through careers in social work. They describe the school’s faculty members and learning environment as positive, supportive and stimulating. They like that the school’s facility, which moved to a newly constructed building last year, has state-of-the-art technology. Since the school’s enrollment is small – 50 BSW students, 225 master’s and 25 doctoral – students are in many of the same classes together and get to know each other well. Students say instructors also work hard to learn students’ names and often greet them by name in the hallways. “You know you’re in social work when somebody sneezes and the entire class turns around and says ‘Bless you,’” said Ally Cherveny, a junior from Wilmington, Ill.

SPECTROMETER, CONTINUED FROM PAGE 1 grams using only textbooks. For example, one student inquired about the camera’s sensitivity to light in the room and how that might affect its ability to read the spectrum. “You’ve discovered a problem inherent in all spectrometers: stray light.” I have been struggling ever since I started teaching to get across to university students the concept of stray light and what a problem it is, and here was a high school kid who picked it right up because it was in front of her face!” Scheeline said.

Scheeline also has shared his low-cost instrument with those most likely to benefit: high school teachers. Teachers participating in the UI EnLiST program, a two-week summer workshop for high school chemistry and physics teachers in Illinois, built and played with cell-phone spectrometers during the 2009 and 2010 sessions. Those teachers now bring their experience – and assembly instructions – to their classrooms. Scheeline wrote a detailed article in the journal Analytical Sciences Digital Library published in the journal Applied Spectroscopy. He hopes that the free availability of the educational modules and software source code will inspire programmers to develop smart-phone applications so that the analyses can be performed in-phone, eliminating the need to transfer photo files to a computer and turning cell phones into invaluable classroom tools.

“The potential is here to make analytical chemistry a subject for the masses rather than something that is only done by specialists,” Scheeline said. “There’s no doubt that getting the cost of equipment down to the point where more people can afford them in the education system is a boon for everybody.”

“Passionate” is a word that comes up a lot when the BSW students share their feelings about helping others through careers in social work. They describe the school’s faculty members and learning environment as positive, supportive and stimulating. They

ON THE WEB
Analytical Sciences Digital Library
http://ga.illinois.edu/audiologyclinic

Ad removed for online version

Ad removed for online version
Grant to ACES to help improve Extension in poor countries

By Jennifer Shiko

ACES-ITCS consortium led by the UI College of Agricultural, Consumer and Environmental Sciences received $9 million to improve the livelihoods of rural farmers in the world’s poorest nations by modernizing and strengthening their agricultural Extension systems.

The UI was selected as the lead institution to undertake the Modernizing Extension and Advisory Systems Project, funded by the United States Agency for International Development. This five-year project will involve a strategic analysis of the activities and investments needed to strengthen the pluralistic Extension systems in 20 of the poorest developing countries.

“This is the first significant investment that USAID has made to help strengthen national agricultural Extension systems in poor developing countries in several decades,” said Burton Swanson, director of the ACES Office of International Programs and a UI professor emeritus. “Extension systems in the poor countries of Africa, Asia and Central America need to undergo a significant change to effectively serve the needs of small-scale male and female farmers. Our goal is to transform these Extension systems so they can play a key role in both increasing farm incomes and improving the livelihoods of the rural poor, especially farm women.”

The changing global economy has created many new market opportunities for agricultural producers worldwide, Swanson said. The MEAS project will help train and support local Extension workers to be “knowledge brokers” and link farmers to markets by drawing on the expertise of innovative farmers that are already producing and marketing profitable agricultural products.

The project’s goal is to help farmers with limited resources in 20 of the world’s poorest countries identify emerging market opportunities while using their land and labor resources to more efficiently serve these markets. In addition, they will utilize sustainable natural resource management practices.

The MEAS project will help train and support local Extension workers to be “knowledge brokers” and link farmers to markets by drawing on the expertise of innovative farmers that are already producing and marketing profitable agricultural products.

The project’s goal is to help farmers with limited resources in 20 of the world’s poorest countries identify emerging market opportunities while using their land and labor resources to more efficiently serve these markets. In addition, they will utilize sustainable natural resource management practices.

WIND FARMS, CONTINUED FROM PAGE 8

“Most public Extension systems in these developing countries are very poorly financed and have a very limited impact on the rural poor,” said Schuyler Korban, the director of the ACES Office of International Programs. “This project will have a significant transformative effect on Extension and advisory services in developing countries around the world. These efforts could impact millions of people in these countries as availability of products through increased market channels assist in alleviating poverty through economic development.”

The MEAS team will focus on three major key areas in order to strengthen and transform these Extension systems.

Our first goal is to develop training materials for development specialists, policy makers, Extension directors and Extension field staff,” Swanson said. “We plan to complete case studies and pilot projects to validate and replicate good Extension practices as documented in other countries. We will also conduct in-depth assessments of the Extension systems in the target countries, with a goal of identifying the strengths and weaknesses of these existing systems.”

Finally, recommended investments will be developed that can help strengthen these Extension systems. Then plans will be submitted to the USAID Mission in each country for additional funding and implementation.

“We are elated that we have been selected to receive this major USAID grant,” Korban said. “This effort will continue to engage the College of ACES and the University of Illinois in the arena of international agricultural development.”

MEAS is a consortium of several strong partner institutions, including Michigan State University, Cornell University, University of California at Davis, University of Florida, North Carolina A&T University, Catholic Relief Services, Cultural Practices LLC, International Food Policy Research Institute, Winrock International, Sasakawa Africa Fund for Extension Education, Sasakawa Africa Association, and the Alliance for a Green Revolution in Africa.

By Jennifer Shiko

This is the first significant investment that USAID has made to help strengthen national agricultural Extension systems in poor developing countries in several decades,” said Burton Swanson, director of the ACES Office of International Programs and a UI professor emeritus.

The MEAS project will help train and support local Extension workers to be “knowledge brokers” and link farmers to markets by drawing on the expertise of innovative farmers that are already producing and marketing profitable agricultural products.

The project’s goal is to help farmers with limited resources in 20 of the world’s poorest countries identify emerging market opportunities while using their land and labor resources to more efficiently serve these markets. In addition, they will utilize sustainable natural resource management practices.

The MEAS team will focus on three major key areas in order to strengthen and transform these Extension systems.

Our first goal is to develop training materials for development specialists, policy makers, Extension directors and Extension field staff,” Swanson said. “We plan to complete case studies and pilot projects to validate and replicate good Extension practices as documented in other countries. We will also conduct in-depth assessments of the Extension systems in the target countries, with a goal of identifying the strengths and weaknesses of these existing systems.”

Finally, recommended investments will be developed that can help strengthen these Extension systems. Then plans will be submitted to the USAID Mission in each country for additional funding and implementation.

“We are elated that we have been selected to receive this major USAID grant,” Korban said. “This effort will continue to engage the College of ACES and the University of Illinois in the arena of international agricultural development.”

MEAS is a consortium of several strong partner institutions, including Michigan State University, Cornell University, University of California at Davis, University of Florida, North Carolina A&T University, Catholic Relief Services, Cultural Practices LLC, International Food Policy Research Institute, Winrock International, Sasakawa Africa Fund for Extension Education, Sasakawa Africa Association, and the Alliance for a Green Revolution in Africa.
Free symposium is Nov. 5-6

The eBlack Champaign-Urban project, an initiative in the Community Informatics Lab in the Graduate School of Library and Information Science, will host a free symposium Nov. 5-6 focusing on digital technology, community life and campus-community interactions.

The first day will focus on campus-community interactions and will be held at the Graduate School of Library and Information Science. On Nov. 6, events at the Douglas Annex, 804 N. Fifth St., Champaign, will focus on sparking dialogue on the current and planned use of digital technology by churches, social service agencies, community groups, educational agencies and heritage institutions. Each day the symposium will be from 9 a.m. to 5 p.m., with free lunch and refreshments available. Registration is requested, but not required. Participants also may attend any portion of the symposium.

More information and an online registration form are available online at http://www.eBlackCU.net/symposium. For more information, contact Noah Lenstra at 217-244-8203 or 815-275-0268; e-mail nlenstr2@illinois.edu; or use the online contact form.

Assembly Hall

Annual craft sale is Nov. 5-6

Assembly Hall will host the 31st Annual Chris Cringle Craft Sale from 3-9 p.m. Nov. 5 and 9 a.m.-5 p.m. Nov. 6.

The event is one of the Midwest’s largest craft shows, covering all three levels of Assembly Hall. The show features more than 175 booths, displaying a variety of handcrafted items by local and area artists. This year’s raffle is for a handmade holiday quilt.

The hosts of the annual event are members of the Illinois Heartland Decorative Artists, a local chapter of the National Society of Tole and Decorative Painters. The group will offer a free coat and package check. Assembly Hall will provide a rest area and refreshment stand with sandwiches and drinks.

Admission is $5 and includes parking and an entry for door prizes. Children under 6 are free. Strollers and carts are welcome.

Tickets are available weekdays from 10 a.m. to 5 p.m. at the Assembly Hall box office. The box office opens at 8:30 on Nov. 6. For more information, call 217-333-5000.

University Primary School

Open house is Oct. 21

University Primary School will host an open house Oct. 21 at the Children’s Research Center. The school serves preschool, kindergarten and first-grade children in a project-based curriculum. Children must be 3 years old on or before July 1 for the preschool classroom and turn 5 before Sept. 1 to be considered for kindergarten enrollment.

Visitors may observe the preschool classroom from 8:30 a.m. until noon and the combined kindergarten-first grade class from 8:30 a.m. until 2:30 p.m. Applications for the 2011-12 academic year will be available in January. For more information, contact Ali Lewis, the school’s director, at 217-333-3996 or alilewis@illinois.edu.

Roger Ebert’s Film Festival

2011 festival passes go on sale Nov. 1

Festival passes will go on sale Nov. 1 for the 13th annual Roger Ebert’s Film Festival, or “Ebertfest,” to be April 27 to May 1 at the Virginia Theater in Champaign, and on the Urbana campus.

The festival will feature films selected by Ebert that he believes have been overlooked by audiences, critics or distributors.

The passes, which cover all 12 screenings during the five-day event, are $135. They can be purchased starting Nov. 1 through TicketWeb, by way of the festival website (www.ebertfest.com), or at the Bresnan Meeting Center, 706 Kenwood Road, Champaign (217-398-2550). (The theater box office, where tickets traditionally have been available, will be closed for renovations.)

ON THE WEB: jwarfield.com
BRIEFS. CONTINUED FROM PAGE 12

Japan House fundraiser includes auction for vacations, dinner for six
By Shanta Forrest
Art Editor

A round-trip ticket to Japan, dinner for six people at Nanakusa Japanese Restaurant in Milwaukee, a stay in a Colorado vacation home and a private shopping expedition at Circles Boutique in Champaign are just a few of the items that will be auctioned to raise funds for Japan House, the teaching facility on the U of I campus that focuses on the Japanese arts.

The Oct. 24 fundraiser will begin with a sake tasting and bazaar from 4:30 p.m. at Japan House. Among the items available for purchase will be clothing, handbags and other goods created from kimono and obis; Japanese and Asian antiques and collectibles; jewelry and handcrafted tea bowls.

The dinner and auctions will begin at 5:30 p.m. in the Illinois Ballroom at the I Hotel and Conference Center, 1900 S. First St., Champaign. An Asian-themed dinner will be followed by silent and live auctions fea-
turing more than 1,550 items, including a sencha-do (a green tea ceremony), a stay at Timber Bluff resort in Saukatauc, Mich.; a cooking lesson with Chef Thad Morrow, of Bacaro restaurant in Champaign; and the opportunity to hold a private event at the UI’s new exhibition space, Figure One, in downtown Champaign.

The last auction to raise funds for Japan House was held in 2005 and raised $30,000, said Cynthia Voelkl, assistant director of Japan House.

“We have to raise funds for all programming,” Voelkl said. “We have some university funding for staffing and maintenance, but programming is provided by donations.”

A capital campaign that ended Dec. 31, 2009, raised about $4 million in pledges and gifts for the Japan House endowment. The gifts included a $1.5 million estate gift from Japan House founder Shozo Sato and his wife, Alice.

Shozo Sato, who also is a professor emeritus of art and design in the College of Fine and Applied Arts, started the university’s Japanese Arts and Cultural Program in 1964, teaching classes in ikebana (flower arranging), calligraphy and tea ceremonies in his off-campus apartment. Classes later were moved to a Victoria-

nian house located at Lincoln and California avenues in Urbana, which was razed in 1997 to construct the east campus gate-

way. The current facility on south Lincoln Avenue in Urbana, adja-
cent to the UI Arboretum, was comple-
ted in 1998.

Tickets are $10 for the bazaar and sake tasting, $70 for the din-
ner and auction, or $75 for both events. Tables of eight tickets, which include the bazaar and dinner, are available for $560.

Co-sponsoring the event with Japan House are Bella Mia Boutique, Bodywork Associates, Busey Bank, John Frauen-
hofter, Dr. Lee Gur-
gi, Kamakura Japa-
nese Steakhouse, and Cody and Mar-
ci Williams.

Tickets are available by calling Japan House at 217-244-9934.

ON THE WEB: http://japanhouse.art.uic.edu/en/

also has organized a musical matinee on campus that will bring together student vocalists and instrumentalists from an array of genres, including jazz, chamber music and world music. The matinee performance, free and open to the public, will be 11:30-2 p.m. on Nov. 3 at Levis Faculty Center.

Mahler composed only one piano quartet, preferring to concentrate on orchestral compositions.

Born in Mumbai, India, Fernandes is a professor of chamber music at – and an alumnus of – the University of Music and Performing Arts in Vienna, where she earned a diploma in piano performance with unanimous distinc-
tions. Before she joined the university’s faculty in 1991, she was a professor of piano at the Joseph Haydn Conser-
vatory in Eisenstadt, Austria.

Markovic, who was born in Zagreb, Croatia, is the artis-
tic director of the Vienna Conservatory. A graduate of the Univer-
sity Mozarteum in Salzburg, he completed his studies at the Tchaikovsky Conservatory in Moscow, the Liszt Academy in Budapest and in London. His recent lectures, master classes and performances have included institutions such as the Musikverein, Vienna; the Philharmony Hall in See BRIEFS, PAGE 14
The Chicago Symphony Orchestra will perform at 7:30 p.m. Oct. 30 in Foellinger Great Hall at Krannert Center for the Performing Arts. Under the direction of Jaap van Zweden—known for his disciplined and rigorous approach to Beethoven’s symphonies and his open-hearted opera productions—the musicians will perform with soprano Measha Brueggergosman.

Krannert Art Museum

Conceptual mixed media artist featured

On Oct. 29, Krannert Art Museum and Kinkead Pavilion will debut “The Strange Life of Objects: The Art of Annette Lemieux,” a mid-career retrospective of work by the conceptual mixed media artist. A public reception to celebrate the exhibition opening—which will begin with a gallery conversation with Lemieux—will take place from 6-8 p.m. Oct. 28. The exhibition will be on view at the museum through Jan. 2, 2011.

In recent years, Krannert Art Museum organized monographic exhibitions of the work of Louise Bourgeois, Bill Traylor and William Edmondson, Hedda Sterne and Howard Finster. The Lemieux retrospective extends this commitment to present the work of visionaries whose artistic practices challenge formulaic readings of art history, said Kathleen Harleman, the director of the art museum.

The exhibition provides the first critical overview of the artist’s dynamic and varied career. Lemieux first attracted attention on the emerging global art scene in the 1980s. Since then she has continued to produce work that grows in depth and resonance, proving herself to be an artist of lasting significance. Her commitment to content over material motivates her to work with an ever-expanding range of media.

For the exhibition, work from the past 25 years was selected according to chronological and thematic developments in Lemieux’s practice, tracing themes such as the relationship between personal memory and cultural history, content and medium, and text as image.

The exhibition was organized by independent curators Lelia Amalfitano and Judith Hoos Fox, who conceived and contributed to the exhibition’s catalog.

The museum, a unit of the College of Fine and Applied Arts, is open from 9 a.m.-5 p.m. Tuesday through Saturday, 9 a.m.-9 p.m. Thursday, and 2-5 p.m. Sunday. The museum closes on Thursdays at 5 p.m. on university holidays. Admission is free; suggested donation is $3.

Musical tradition

The Chicago Symphony Orchestra will perform at 7:30 p.m. Oct. 30 in Foellinger Great Hall at Krannert Center for the Performing Arts. Under the direction of Jaap van Zweden—known for his disciplined and rigorous approach to Beethoven’s symphonies and his open-hearted opera productions—the musicians will perform with soprano Measha Brueggergosman.
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACE
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.

ACES
Robert Darmody, a professor of pedology in the department of natural resources and environmental sciences in the College of Agricultural, Consumer and Environmental Sciences, will be recognized by the Soil Science Society of America as one of its 2010 SSA 2010 Fellows at an awards ceremony during the society’s annual meeting Oct. 31 to Nov. 3.

Noted for its soils and environmental courses at Illinois and conducts research related to soils, land use and the environment, including impacts of mining and of river sediment dredging. He also studies biofuel crops and associated carbon sequestration in soils.
Project to examine best practices for recovery after disasters

By Sharita Forrest
Arts Editor

The National Science Foundation has awarded a three-year, $449,000 grant to a multi-institutional research team led by a disaster recovery specialist at the UI that is studying China’s recovery from a devastating earthquake in 2008. The goal of the project is to develop a model of recovery management that outlines appropriate governmental roles and actions to ensure fast, efficient, equitable and sustainable recovery from disasters.

The Wenchuan earthquake, which struck southwest China on May 12, 2008, affected 46 million people, causing more than 88,000 deaths and leaving nearly 5 million residents temporarily homeless. More than 216,000 buildings were destroyed, with some towns completely demolished by collapsed structures and landslides. Fifteen state highways were severely damaged, paralyzing economic and social activities in the region. The devastation and death toll from the 7.9 magnitude earthquake made it China’s worst disaster in 30 years and ranked it among the worst calamities worldwide in a century.

“The Wenchuan earthquake affected many small- to medium-sized cities that would be similar in size to larger cities in the U.S., such as New Orleans,” said Robert Olshansky, a faculty member in the department of urban and regional planning, which is part of the College of Fine and Applied Arts at Illinois. “It was an urban disaster over a widespread area.” Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

About two months after the Wenchuan earthquake, Olshansky was invited to Beijing for a disaster planning conference and visited some of the damaged areas near the city of Chengdu. Johnson also visited the damaged region a few months after the earthquake as a member of an NSF-funded project team. “I was struck by the enormity of the disaster and by Chinese officials’ ambitious plans for recovery,” said Olshansky, who returned to the disaster area twice in 2009.

The Chinese government’s response to the Wenchuan earthquake was unique in some ways, Olshansky said. Within days of the disaster, national officials created an Earthquake Rescue and Relief Headquarters, the first of its kind in China, which established restoration priorities and designated responsibilities at the national, provincial and local levels. The headquarters set three-month targets that emphasized survivor needs and established an ambitious, comprehensive set of three-year goals to ensure that every family had housing, employment, social services and medical care.

The 24 counties affected by the earthquake were paired with unaffected provinces across China, which had a mandate to allocate a minimum of 1 percent of budget revenues to the devastated counties for recovery programs. The unaffected regions were delegated work tasks and resource assignments and given deadlines for accomplishing them.

The research team will measure the success of the Chinese governments’ recovery policies by conducting interviews with governmental officials and by surveying 450 households, collecting data on factors such as damage levels and household members’ employment, health and satisfaction with the speed and quality of the programs.

One of the challenges that the team faces is the potential reluctance of Chinese officials and earthquake victims to share information. “We have tried to address this by working with local partners,” Olshansky said. “We’re approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That’s the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We’re hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.

Earthquake recovery Urbam regional planning professor Robert Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

We're approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That's the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We're hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.

Earthquake recovery Urbam regional planning professor Robert Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

We're approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That's the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We're hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.

Earthquake recovery Urbam regional planning professor Robert Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

We're approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That's the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We're hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.

Earthquake recovery Urbam regional planning professor Robert Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

We're approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That's the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We're hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.

Earthquake recovery Urbam regional planning professor Robert Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

We're approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That's the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We're hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.

Earthquake recovery Urbam regional planning professor Robert Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

We're approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That's the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We're hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.

Earthquake recovery Urbam regional planning professor Robert Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

We're approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That's the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We're hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.

Earthquake recovery Urbam regional planning professor Robert Olshansky is the lead investigator on a three-year National Science Foundation-funded project that is studying China’s recovery from a devastating earthquake in 2008.

We're approaching this as an information exchange that allows us to share the strengths and weaknesses of our system and theirs. That's the way that we worked in New Orleans and Kobe and how we got access to busy people. They appreciated the opportunity to reflect on their actions and get some new ideas. We're hoping the same thing will happen in China.”

Team member Yan Song, a faculty member at the University of North Carolina at Chapel Hill and recent UI graduate, has spent the past decade researching China’s hazard mitigation and urbanization processes, developing an extensive list of contacts along the way. Another team member, Yu Xiao, a professor in the department of landscape architecture and urban planning and faculty fellow of the Hazard Reduction and Recovery Center at Texas A&M University, is a native of Sichuan Province and recent UI graduate. The team also includes Yang Zhang, a professor in the Urban Affairs and Planning Program at Virginia Polytechnic Institute and State University.

The team is collaborating with college earthquakes.