Strategic Communications and Marketing News Bureau

How much radioactivity is (literally) raining on the U.S. from the Fukushima reactor failures?

In March 2011, a magnitude 9.0 earthquake rattled Japan, triggering a tsunami and the catastrophic failure of three reactors at the Fukushima Daiichi nuclear power plant. The National Atmospheric Deposition Program, part of the Illinois State Water Survey within the Prairie Research Institute at the University of Illinois, collected rainwater samples from its nationwide network in the days following the nuclear incident to test for radioactive fallout. Together with researchers from the United States Geological Survey, NADP researchers published a paper in the journal Environmental Science and Technology detailing their findings. In an interview with News Bureau physical sciences editor Liz Ahlberg, NADP coordinator David Gay and researcher Christopher Lehmann talked about radioactive fallout and the study.

See related video here.

What role does precipitation play in radioactive fallout?

Precipitation (that is, both rain and snow) captures radioactive particles in the upper atmosphere and carries it to Earth’s surface. This process is called “wet deposition.” Radioactive particles can also fall directly to Earth’s surface as dry deposition, but the process that carries radioactivity long-distance (such as from Japan to the United States), is likely dominated by wet deposition.

How could particles from Japan rain down in the U.S.? What did this study teach us about how radioactive pollution travels in the atmosphere?

The tsunami caused by the March 11, 2011, earthquake led to catastrophic failure among the six nuclear reactors at the Fukushima Daiichi power plant. The resulting explosions sent radioactive materials from the reactor high into Earth’s upper atmosphere. The radioactive particles were then transported around the globe by Earth’s normal west to east circulation patterns. We used NOAA’s HYSPLIT model to evaluate the path of the radioactive material from Japan to the United States. The model’s predicted path agreed reasonably well with measurements from our network. Thus, the impact of the Fukushima disaster agreed well with our predictions, namely that the radiation entered the upper atmosphere, was transported across the Pacific Ocean, and was deposited to the U.S. in rain and snow.

What, exactly, did you test for?

Samples were collected across the U.S. from our NADP network of more than 250 sites. Samples were prepared at our laboratory at the Illinois State Water Survey and sent to the USGS National Reactor Facility in Denver. Along with our partners at the USGS, we tested the samples for radioisotopes of iodine (specifically, I-131) and cesium (Cs-134 and Cs-137).

What radioactive elements did you find in precipitation, and where?

Our partners at the USGS detected all three radioactive elements in the precipitation samples. Radioactive I-131 has a half-life (that is, the amount of time it takes to lose half of its radioactive energy) of about eight days. By the time we analyzed the samples, we were able to detect I-131 at only five of the 167 locations tested: at two sites in Washington state, two sites in California and one site in Colorado. Radioactive Cs-134 and Cs-137 have longer half-lives – 2.1 years and 30.2 years, respectively – and we were able to detect those species at many more sites. Radioactive cesium was detected at widely distributed sites across the U.S., with the highest Cs-134 activities detected in Alaska, and the highest Cs-137 activities detected in California.

Did the levels of radioactive particles in precipitation pose a threat to health or the environment?

We certainly have heard and read news reports about the tragic, but localized, impact of the radiation released in the Fukushima disaster. We did not expect (nor have there been reported) health impacts on the U.S. population. The purpose of this study was to record the distribution and magnitude of radioactive fallout using our existing national network. Determining the direct health impact on the U.S. population is more complicated, as it must take into account duration of exposure to radiation, and other factors. The U.S. Environmental Protection Agency routinely monitors the potential radioactive exposure of the U.S. population as part of its “RadNet.” According to the U.S. EPA, the short-term exposure of the U.S. population is unlikely to have any significant health impact.

Read Next

Health and medicine Life sciences Veterinary medicine Two men in a lab. The seated man holds a hologram projection of a brain.

Mutation increases enzyme in mouse brains linked to schizophrenia behaviors

Researchers found a key role for an enzyme regulating glycine in the brain while investigating a rare genetic mutation found in two patients with schizophrenia.

Honors A photo collage featuring all three Sloan Fellowship awardees.

Three Illinois professors named Sloan Research Fellows

Three Illinois scientists are among 126 recipients of the 2025 Sloan Research Fellowships from the Alfred P. Sloan Foundation. According to the foundation, the awardees represent “the very best of early-career science, embodying the creativity, ambition, and rigor that drive discovery forward.” This year’s Illinois recipients are chemistry professors Angad Mehta and Lisa Olshansky, and materials science and engineering professor Yingjie Zhang.

Life sciences Graphic with the title "42nd Insect Fear Film Festival" in a scary font and with a picture of a tarantula.

Insect Fear Film Festival to feature ‘hairy, scary’ tarantulas

CHAMPAIGN, Ill. — The 2025 Insect Fear Film Festival at the University of Illinois Urbana-Champaign will feature “Tarantulas: Hairy, Scary Spiders” as its theme and a Hollywood bug wrangler who works with the 8-legged creatures as a special guest. The festival, which is hosted by the Entomology Graduate Student Association and is in its 42nd […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010