Strategic Communications and Marketing News Bureau

Hidden order found in cuprates may help explain superconductivity

CHAMPAIGN, Ill. – Like the delicate form of an icicle defying gravity during a spring thaw, patterns emerge in nature when forces compete. Scientists at the University of Illinois at Urbana-Champaign have found a hidden pattern in cuprate (copper-containing) superconductors that may help explain high-temperature superconductivity.

Superconductivity, the complete loss of electrical resistance in some materials, occurs at temperatures near absolute zero. First observed in 1911 by Dutch physicist Heike Kamerlingh Onnes, the mechanism of superconductivity remained unexplained until 1957, when Illinois physicists John Bardeen, Leon Cooper, and J. Robert Schrieffer determined that electrons, normally repulsive, could form pairs and move in concert in superconducting materials below a certain critical temperature.

For more than a decade, scientists have been baffled by superconductivity in the copper oxides, which occurs at liquid-nitrogen temperatures and does not seem to behave according to standard BCS theory. A tantalizing goal, which would have enormous implications for electronics and power distribution, is to achieve superconductivity at room temperature. A large piece of the puzzle has been to understand how the coherent dance of electrons that gives rise to superconductivity changes when the material is heated.

In a paper to appear in the journal Science, as part of the Science Express Web site, on Feb. 12, researchers at Illinois show that when heated, the orderly superconducting dance of electrons is replaced, not by randomness as might be assumed, but by a distinct type of movement in which electrons organize into a checkerboard pattern. The experimental findings imply that the two types of electron organization, coherent motion and spatial organization, are in competition in the copper oxides – an idea that may break the logjam on the mystery of high-temperature superconductivity.

“Heating a normal superconductor above its critical temperature results in a normal metallic behavior, but heating a high-temperature superconductor above its critical temperature results in a non-metallic state of electrons called the pseudogap state,” said physics professor Ali Yazdani, a Willett Faculty Scholar at Illinois and senior author of the paper. “We have examined for the first time the motion of electrons in this mysterious pseudogap state on the nanometer scale.”

Yazdani and graduate students Michael Vershinin and Shashank Misra used a scanning tunneling microscope to map electron waves in cuprate superconductors at high temperatures. “Comparing maps of electron waves in both the superconducting and the pseudogap state, we have found that electrons in the pseudogap state organize into a checkerboard pattern,” Yazdani said. “This pattern appears to be the result of competing forces felt by the electrons, such as Coulomb repulsion because of their charge and magnetic interactions resulting from their spins.”

Regardless of the specific cause of the local ordering, “our experimental observations provide new constraints on the potential theoretical description of the pseudogap state in the cuprates and how it transforms into superconductivity when we cool the cuprate samples,” Yazdani said.

Pattern formation of electron waves in high-temperature copper-oxide superconductors has long been anticipated theoretically, and Illinois physics professor Eduardo Fradkin contributed to the theoretical work. However, the experimental discovery of such pattern formation was made possible by a new generation of STM designed by Yazdani’s group to operate at temperatures above the superconducting transition temperature.

Collaborators on the pattern-formation project also included colleagues at the Central Research Institute of Electric Power Industry in Japan. The National Science Foundation, Office of Naval Research and the U.S. Department of Energy funded the work.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010