Strategic Communications and Marketing News Bureau

Giant reed is a photosynthetic outlier, study finds

CHAMPAIGN, Ill. — Arundo donax, a giant reed that grows in the Mediterranean climate zones of the world, isn’t like other prolific warm-weather grasses, researchers report. This grass, which can grow annually to 6 meters (nearly 20 feet) in height, uses a type of photosynthesis that is more common to crop plants like soybeans, rice and peanuts.

The new findings are published in Scientific Reports, a Nature publishing group journal.

Stephen P. Long, a professor of crop sciences and of plant biology, found that a very productive grass known as giant reed uses a less-efficient type of photosynthesis and yet has very high yields.

“Most highly productive grasses, like sugarcane, miscanthus and switchgrass, use these types of photosynthesis called C4, which we know to be very efficient,” said study leader Stephen P. Long, a professor of crop sciences and of plant biology at the University of Illinois. “We confirmed that giant reed uses C3, a less efficient type of photosynthesis, and yet it’s really productive. We just had to find out how.”

The new findings could help scientists improve C3 photosynthesis in other plants.

Only a few detailed studies have evaluated the productivity of Arundo donax, “but some studies suggest it could produce as much as 60 tons of dry matter per hectare,” Long said. “That’s about the maximum you’d ever see from Miscanthus x giganteus, also known as giant elephant grass, a C4 grass that, as its name suggests, is considered very productive.”

For this reason, Arundo donax has attracted attention as a potential bioenergy crop despite questions about its invasive tendencies.

In the new study, the researchers focused on a naturally growing stand of Arundo donax in a mixed, five-acre site in southern Portugal. They measured how quickly the grass took in carbon dioxide and lost water through the pores in its leaves, the amount of chlorophyll in the leaves, how much light upper and lower leaves received or reflected, and how efficiently they photosynthesized in high- and low-light conditions.

These measurements offered insight into some of the factors that make the plant so productive.

“We found first of all that it is a classical C3 plant. It has all the properties of C3 photosynthesis and none of those of C4,” Long said.

“It produces a lot of leaves, and while the top leaves are getting a lot of sunlight, the lower leaves are shaded,” he said. “We found that the plant’s shade photosynthesis is very efficient, so the lower leaves are producing a lot of chlorophyll to capture what light is getting to them, and the plant is using that at maximum efficiency.”

In C3 plants, the enzyme that catalyzes the uptake of carbon dioxide is known as Rubisco.

“We found that in Arundo donax the activity of Rubisco in the intact leaf was exceptionally high, as was its capacity to generate the reductant that biochemically reduces the assimilated carbon dioxide to carbohydrate,” Long said.

The researchers also found that, contrary to their expectations, Arundo donax used no more water per unit of carbon absorbed into its tissues than other C3 plants, Long said. Some had suggested that it boosted photosynthesis by opening the pores in its leaves very wide, taking in a lot of carbon dioxide but also wasting water. Other C3 plants, like some cotton cultivars that rely on irrigation, do this, Long said. They are productive, but have low water-use efficiency because they lose a lot of water through their leaves.

“Giant reed is a deep-rooting plant, so it’s able to get plenty of water. But it’s not using that water any less efficiently than other C3 plants,” Long said.

“What we were really investigating here was the scientific question: How does this plant achieve this high productivity?” he said.

Some had suggested that the plant uses C4 photosynthesis or that it achieves its high productivity by guzzling water, he said. But the new study establishes that neither hypothesis is true.

“We’re obviously excited that we’ve finally settled this mystery,” he said.

Long is a researcher in the Carl R. Woese Institute for Genomic Biology at the U. of I.

Editor’s notes:

To reach Stephen P. Long, call 217-244-0881; email slong@illinois.edu.

The paper “High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax” is available online or from the U. of I. News Bureau

doi:10.1038/srep20694

 

Read Next

Life sciences Photo of Michael Ward standing in tall grass on a riverbank.

How are migrating wild birds affected by H5N1 infection in the U.S.?

Each spring, roughly 3.5 billion wild birds migrate from their warm winter havens to their breeding grounds across North America, eating insects, distributing plant seeds and providing a variety of other ecosystem services to stopping sites along the way. Some also carry diseases like avian influenza, a worry for agricultural, environmental and public health authorities. […]

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010