Strategic Communications and Marketing News Bureau

First-year chemistry students learn data analytics in new lab curriculum

CHAMPAIGN, Ill. — A team of scientists at the University of Illinois Urbana-Champaign, Rice University and Danville Area Community College has created an affordable laboratory curriculum for teaching advanced data analysis techniques and instrument building to first-year general chemistry students.

Students in the course at DACC get a first-hand look at the inside of a spectrometer by building a simple one from a kit and discover how they can use programming and data science techniques to extract hidden information from chemical measurements, the scientists say.

portrait of Amberle Browne

Amberle Browne is a chemistry professor at DACC.

“Physical chemistry is not something that’s usually introduced in community college settings,” said Alison Wallum, a graduate student at the U. of I. and the primary designer of the curriculum. “We wanted to figure out a way to get students excited about physical chemistry concepts early on without making them unnecessarily complex.” 

Wallum is the first author of the group’s paper, published in the Journal of Chemical Education, and the group is making the teaching materials available on GitHub for educators anywhere who want to use them.

Co-author Amberle Browne and Amy Nicely, both chemistry professors at DACC, teach the lab as part of the college’s first-semester general chemistry course – taken by equal proportions of students majoring in health professions, engineering and other sciences – and pilot-tested it during the Spring and Fall Semesters 2022.

 They said their students really enjoy assembling the spectrometer, and although the lab is challenging, it significantly enhances their learning.

“Physically building the instrument is much more useful than reading the theory and gives them a much better understanding of how it works,” Browne said. “It’s a good level of challenge, and they are entering Chemistry 102 with significantly better skills than before.”

portrait of Christy Landes

Christy Landes is a professor of chemistry, of electrical and computer engineering, and of chemical and biomolecular engineering at Rice University. Landes leads the Center for Adapting Flaws as Features, a multi-university initiative striving to increase diversity among those entering chemistry and other science disciplines.

Working in small groups, students assemble a simple Raspberry Pi-based absorption spectrometer and test it by collecting data on known food dyes contained in a set of colorful mixtures. Using a spreadsheet, they transfer their data to Jupyter notebooks containing pre-written computer code to perform the data analysis on solutions containing unknown proportions of dyes.

The team that developed the curriculum is affiliated with the Center for Adopting Flaws as Features, a multi-university initiative funded by the National Science Foundation. CAFF’s goals include increasing diversity among those entering science fields through outreach with community colleges, and creating affordable, modular instrumentation for instructional purposes. 

Christy Landes, a professor of chemistry, of electrical and computer engineering, and of chemical and biomolecular engineering at Rice University, leads the initiative. CAFF paid the costs of the spectrometer kits at about $250 each.

“The equipment and the computational technology to do simple experiments have become practically free,” Landes said. “Some of the components in this spectrometer can be purchased for tens of dollars online, and you can assemble one for teaching purposes for practically nothing.”

Designed to be taught in three weekly lab sessions that total four to six hours, the curriculum can be integrated into existing chemistry courses. In an optional fourth session, student groups deliver presentations on the applications of spectroscopy or a related field.

“It was definitely challenging coming up with a lab and implementing it,” Wallum said. 

“Rather than focus on one topic related to physical chemistry, we first sat down and thought about some of the big-picture things we typically do as chemists.”

They decided to include instrument building “because a lot of the time we’re designing new instruments to do experiments that may not be available commercially,” Wallum said. “We also wanted students to get hands-on experience collecting data and learning how to adjust their instruments to capture the best data possible.”

Although many students have little experience with computer code or computational tools, most can perform the analysis correctly with step-by-step instructions, the researchers said.

“Anyone can easily execute the Python code, and although it is prewritten for them, the students get a chance to see it and the accompanying comments,” Nicely said. “Everyone benefits from seeing an interdisciplinary connection between chemistry and computer science.”

By making the guided activities, instructor guide, detailed instructions and lecture slides accessible on the course’s GitHub, the team hopes that teachers who use them will expand the online repository by uploading their own adaptations and sharing their experiences. 

“If you want to teach students to do something new, you must show their instructors how to teach it. That’s really important,” said Martin Gruebele, the James R. Eiszner Endowed Chair in Chemistry at the U. of I. He also holds an appointment in physics and is affiliated with the Beckman Institute for Advanced Science and Technology and the Carle Illinois College of Medicine, among other campus units.

A team at Rice University has adapted the curriculum to teach a different topic at a Houston preparatory high school for disadvantaged students, and colleagues at the University of Wisconsin affiliated with CAFF are adapting it for lessons on dye kinetics.

“We really want to demonstrate that it’s possible to do a much better job teaching students and make the science broadly accessible … so we can train a new generation of students to better understand how to use data science, which is going to be crucial for any job in technology in the future,” Landes said.

Exposing students to complex topics such as physical chemistry and data analytics as early as possible helps mitigate their trepidation and instills confidence in their ability to tackle increasingly difficult material in upper-division courses, Gruebele said, and he urged teachers not to underestimate their students’ or their own abilities to successfully navigate the curriculum.

“My word is to all the instructors out there is if you’re thinking, man, that would be nice to do something like that, but this is just too hard – get over it. Do it,” Gruebele said.

“It may seem a bit scary and new, and it will be somewhat difficult at the beginning, but it’s really going to be worth it in the long term and make things more exciting for you and for your students,” he said. “Students can do all kinds of things that you would never believe they could do if you confront them in a knowledgeable, caring way.”

Additional co-authors of the paper were research scientist Lawrence Tauzin, postdoctoral student Subjojyoti Chatterjee and assessment director Christopher D. Barr, all of Rice University; and U. of I. undergraduate students Zetai Liu and Joy Lee.

Editor’s Note: To reach Alison Wallum, email awallum2@illinois.edu

To contact Amberle Browne, email a.browne@dacc.edu

To contact Amy L. Nicely, email a.nicely@dacc.edu To contact Christy F. Landes, email cflandes@rice.edu

To contact Martin Gruebele, email mgruebel@illinois.edu

The paper “An instrument assembly and data science lab for early undergraduate education” is available online or from the News Bureau.

DOI: 10.1021/acs.jchemed.2c01072 

Read Next

Engineering A tilted view of miscellaneous of multicolored used batteries.

Study shows new hope for commercially attractive lithium extraction from spent batteries

A new study shows that lithium — a critical element used in rechargeable batteries and susceptible to supply chain disruption — can be recovered from battery waste using an electrochemically driven recovery process. The method has been tested on commonly used types of lithium-containing batteries and demonstrates economic viability with the potential to simplify operations, minimize costs and increase the sustainability and attractiveness of the recovery process for commercial use.

Health and Medicine Research team in the lab.

Study: A cellular protein, FGD3, boosts breast cancer chemotherapy, immunotherapy

CHAMPAIGN, Ill. — A naturally occurring protein that tends to be expressed at higher levels in breast cancer cells boosts the effectiveness of some anticancer agents, including doxorubicin, one of the most widely used chemotherapies, and a preclinical drug known as ErSO, researchers report. The protein, FGD3, contributes to the rupture of cancer cells disrupted […]

Arts Photo from "Anastasia: The Musical" showing the Romanov family in period costumes.

Lyric Theatre’s production of “Anastasia: The Musical” tells story of loss, survival and reinvention

CHAMPAIGN, Ill. — The Lyric Theatre’s production of “Anastasia: The Musical” is a story with romance and mystery, an appealing score and several big dance numbers. It also is a story of loss, survival and reinvention. The musical opened on Nov. 11 and will be performed Nov. 13-15 at Krannert Center for the Performing Arts. […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010