Strategic Communications and Marketing News Bureau

Female embryonic sexual development driven by universal factor

Veterinary biosciences professor Humphrey Yao and graduate student Chia-Feng Liu found that a gene essential to the development of many organs is also vital to female, but not male, sexual development.

Veterinary biosciences professor Humphrey Yao and graduate student Chia-Feng Liu found that a gene essential to the development of many organs is also vital to female, but not male, sexual development.

CHAMPAIGN, Ill. – A gene essential to the growth and development of most organ systems in the body also is vital to female – but not male – embryonic sexual development, scientists report this month.

The study, from researchers at the University of Illinois and the University of Texas, appears in Human Molecular Genetics. The findings lend support to a controversial hypothesis about mammalian sexual development.

In the beginning – in terms of their sexual organs – all embryos look alike, said Illinois veterinary biosciences professor Humphrey Yao, who led the study.

“They have a common primordium, the foundation for both testis and ovary,” he said. “Only at a certain stage of development does this primordium start to follow a different path.”

In the early days of research into sexual development, it was thought that all females had two X chromosomes, all males had an X and a Y, and that the Y made all the difference. Unless it had a Y chromosome, an embryo developed ovaries and became female, more or less by default, scientists thought. They even found a specific gene on the Y chromosome, called SRY (for sex-determining region of the Y chromosome) that appeared to be essential for testes formation.

But when researchers discovered some rare cases of individuals who developed testes even though they had two X chromosomes and no Y chromosome or SRY gene, they realized that the mechanisms of sex determination were more complex than previously thought.

This led to a new theory, called the “Z” hypothesis, which proposed that testes development was actually the default pathway. According to this theory, an unknown gene or process, called “Z,” could disrupt this pathway and lead to the development of ovaries.

The “Z” hypothesis explained why SRY appeared essential for testes development. When it is present, SRY suppresses “Z” and allows the default option (development of testes) to occur.

This theory was complex and ambiguous, however, leading some to reject it.

Yao and graduate student Chia-Feng Liu wanted to investigate a particular player in the cast of molecules known to be involved in transforming the primordium into testis or ovary. This molecule, beta-catenin, is an important regulator of cell proliferation and differentiation. When it functions as a transcription factor, it turns other genes on or off. Without beta-catenin, which is expressed in many organs and tissues, an embryo will not survive.

Yao and Liu knew that other proteins also were critical to the development of ovaries in particular. Mice that lacked the genes for a signaling protein, known as Wnt4, or another secreted protein, called R-spondin1, experienced a partial female-to-male sex reversal: They formed ovaries, but with male characteristics, such as blood-vessel structures like those in testes. Humans with mutations in their WNT4 and R-spondin1 genes had similar malformations of the sex organs.

Other studies had indicated that beta-catenin was important to the action of Wnt4 and R-spondin1 in various tissues. But no studies had found direct genetic proof that beta-catenin was involved in regulating how the ovaries developed.

To determine whether beta-catenin had a role in forming the ovaries, the researchers developed a mouse embryo in which the beta-catenin gene could be shut off at the earliest stage of development of the gonads while remaining functional in other organs.

“To our surprise, the ovaries still formed,” Yao said. But male sexual structures also appeared, creating an amalgamation of male and female sexual structures that looked very much like those produced when the Wnt4 or R-spondin1 genes were mutated or missing.

“That tells us very conclusively that beta-catenin is an internal regulator of this pathway,” Yao said.

To see how the absence of beta-catenin would affect testes formation, the researchers repeated the experiment in embryos in the early stages of testes development.

“When we looked at the testes without beta-catenin,” Yao said, “they developed just fine.”

The results were so unexpected that the researchers conducted the experiment again and again to test their findings.

“When I looked at the results in the testes I couldn’t believe it. How could such an important gene like beta-catenin function differently in males and females?” Yao said.

When beta-catenin acts as a transcription factor it goes into the nucleus of the cell to interact with the DNA. The proteins, Wnt4 and R-spondin1 (and another one, called follistatin, which is also an important player in this pathway), are all secreted proteins. They are emitted from the cell, Yao said, and yet it appears that their production or secretion relies on an intracellular protein, beta-catenin.

“Wnt4, R-spondin1, follistatin – these genes all code for secreted proteins,” Yao said. “How does the cell know to respond to this signal? And how can secreted factors change the fate of an organism?”

Yao said his team’s findings provided some support for the “Z” hypothesis, with beta-catenin acting as a vital intermediary in a pathway that includes Wnt4 and R-spondin1 to suppress the development of male sex organs.

This study was supported in part by the National Institutes of Health and the March of Dimes Foundation.

 

Editor’s note: To reach Humphrey Yao, call 217-333-9362; e-mail: hhyao@illinois.edu.

To view or subscribe to the RSS feed for Science News at Illinois, please go to: http://illinois.edu/lb/rss/608/text.xml.

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010