Strategic Communications and Marketing News Bureau

Exercise triggers stem cells in muscle

CHAMPAIGN, Ill. – University of Illinois researchers determined that an adult stem cell present in muscle is responsive to exercise, a discovery that may provide a link between exercise and muscle health. The findings could lead to new therapeutic techniques using these cells to rehabilitate injured muscle and prevent or restore muscle loss with age.

Mesenchymal stem cells (MSCs) in skeletal muscle have been known to be important for muscle repair in response to non-physiological injury, predominantly in response to chemical injections that significantly damage muscle tissue and induce inflammation. The researchers, led by kinesiology and community health professor Marni Boppart, investigated whether MSCs also responded to strain during exercise, and if so, how.

“Since exercise can induce some injury as part of the remodeling process following mechanical strain, we wondered if MSC accumulation was a natural response to exercise and whether these cells contributed to the beneficial regeneration and growth process that occurs post-exercise,” said Boppart, who also is affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

The researchers found that MSCs in muscle are very responsive to mechanical strain. They witnessed MSC accumulation in muscle of mice after vigorous exercise. Then, they determined that although MSCs don’t directly contribute to building new muscle fibers, they release growth factors that spur other cells in muscle to fuse and generate new muscle, providing the cellular basis for enhanced muscle health following exercise.

A key element to the Illinois team’s method was in exercising the mice before isolating the cells to trigger secretion of beneficial growth factors. Then, they dyed the cells with a fluorescent marker and injected them into other mice to see how MSCs coordinated with other muscle-building cells.

In addition to examining the cells in vivo, the researchers studied the cells’ response to strain on different substrates. They found that MSC response is very sensitive to the mechanical environment, indicating that conditions of muscle strain affect the cells’ activity.

“These findings are important because we’ve identified an adult stem cell in muscle that may provide the basis for muscle health with exercise and enhanced muscle healing with rehabilitation/movement therapy,” Boppart said. “The fact that MSCs in muscle have the potential to release high concentrations of growth factor into the circulatory system during exercise also makes us wonder if they provide a critical link between enhanced whole-body health and participation in routine physical activity.”

Next, the group hopes to determine whether these cells contribute to the decline in muscle mass over a person’s lifetime. Preliminary data suggest MSCs become deficient in muscle with age. The team hopes to develop a combinatorial therapy that utilizes molecular and stem-cell-based strategies to prevent age-related muscle loss.

“Although exercise is the best strategy for preserving muscle as we age, some individuals are just not able to effectively engage in physical activity,” Boppart said. “Disabilities can limit opportunities for muscle growth. We’re working hard to understand how we can best utilize these cells effectively to preserve muscle mass in the face of atrophy.”

The team published its findings in the journal PLoS One. The Illinois Regenerative Medicine Institute, the Ellison Medical Foundation and the Mary Jane Neer Foundation supported this work.

Editor’s note: To contact Marni Boppart, call 217-244-1459; email mboppart@illinois.edu.

The paper, “Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle,” is available online.

Read Next

Engineering Tilted image of used batteries.

Study shows new hope for commercially attractive lithium extraction from spent batteries

A new study shows that lithium — a critical element used in rechargeable batteries and susceptible to supply chain disruption — can be recovered from battery waste using an electrochemically driven recovery process. The method has been tested on commonly used types of lithium-containing batteries and demonstrates economic viability with the potential to simplify operations, minimize costs and increase the sustainability and attractiveness of the recovery process for commercial use.

Health and Medicine Research team in the lab.

Study: A cellular protein, FGD3, boosts breast cancer chemotherapy, immunotherapy

CHAMPAIGN, Ill. — A naturally occurring protein that tends to be expressed at higher levels in breast cancer cells boosts the effectiveness of some anticancer agents, including doxorubicin, one of the most widely used chemotherapies, and a preclinical drug known as ErSO, researchers report. The protein, FGD3, contributes to the rupture of cancer cells disrupted […]

Arts Photo from "Anastasia: The Musical" showing the Romanov family in period costumes.

Lyric Theatre’s production of “Anastasia: The Musical” tells story of loss, survival and reinvention

CHAMPAIGN, Ill. — The Lyric Theatre’s production of “Anastasia: The Musical” is a story with romance and mystery, an appealing score and several big dance numbers. It also is a story of loss, survival and reinvention. The musical opened on Nov. 11 and will be performed Nov. 13-15 at Krannert Center for the Performing Arts. […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010