Strategic Communications and Marketing News Bureau

Enzyme activation appears key in helping internal clock tell night from day

Cell and structural biology professor Martha Gillette led the Illinois researchers who found that the PKG-II enzyme triggers our biological clocks. Postdoctoral researcher Jennifer Mitchell, right, was among the researchers.

Cell and structural biology professor Martha Gillette led the Illinois researchers who found that the PKG-II enzyme triggers our biological clocks. Postdoctoral researcher Jennifer Mitchell, right, was among the researchers.

CHAMPAIGN, Ill. – Feel like time is repeating itself and won’t move on? It could be your internal clock is backpedaling because your PKG-II is out of whack.

That scenario was played out at the University of Illinois at Urbana-Champaign in experiments at a molecular level deep within the brain of rats where, like in all mammals, the primary circadian clock is located. The clock is a dynamic biological process with a near-24-hour cycle. PKG-II is an enzyme, a protein that triggers biochemical reactions.

Reporting in the Aug. 19 issue of the journal Neuron, the Illinois scientists say that the activation of PKG-II may be the critical control point that tells our biological clock to proceed by putting night behind and journeying into a new day.

In their research, the scientists blocked the phosphorylation action of PKG-II during the normal cycling of the clock. By doing so, they disrupted the key activity of this kinase enzyme that adds phosphates to proteins, a signaling mechanism necessary for information transfer in cells.

The internal clock produces the 24-hour rhythm in the brain and all cells. The cycle consists of an automatically regulated loop of transcription and translation of special clock genes, whose products act as “gears” of the clockwork. Correct cycling is vital to the oscillation of metabolism and behaviors, which happen during sleep and wakefulness.

“Without PKG-II, the clock behaves as if locked in a dynamic loop that encompasses the biochemical state of late night,” the researchers wrote. “By potentially interacting with CLOCK (a critical protein of the central clockwork) during its phosphorylation, PKG-II may influence core clock components to signal the completion of nighttime processes and permit transit to the daytime domain.”

“Thus, clock-controlled activation of PKG-II may serve as a critical checkpoint of temporal state at the night-to-day transition, which would align with dawn in the solar cycle,” they wrote.

In other words, they say, such inhibition of PKG-II leads to “significant phase delay of circadian rhythm.” The clock is literally forced back in time to repeat the necessary sequence of protein communications before it can advance.

“These findings suggest that ‘check-point’ regulatory processes like those in the cell-division cycle, which generates two cells from one, are similar in the brain clock,” said Martha U. Gillette, a professor in the department of cell and structural biology in the U. of I. College of Medicine at Urbana-Champaign.

The research was done in her laboratory.

In addition to Gillette, five other researchers were involved in the study: Shelley A. Tischkau, a professor of veterinary biosciences in the College of Veterinary Medicine; postdoctoral researchers Jennifer W. Mitchell, Jessica W. Barnes and Jeffrey A. Barnes; and doctoral student Laura A. Pace.

The research was supported by six different Public Health Service grants to Gillette, Jessica and Jeffrey Barnes, Tischkau and Mitchell, and a grant to Tischkau from the Molecular and Endocrine Pharmacology Program of the U. of I. campus’ Governor’s Venture Technology Fund.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010