Strategic Communications and Marketing News Bureau

Engineers roll up their sleeves – and then do same with inductors

CHAMPAIGN, Ill. – On the road to smaller, high-performance electronics, University of Illinois researchers have smoothed one speed bump by shrinking a key, yet notoriously large element of integrated circuits.

Experimental images of a self-rolled inductor, printed on a very thin film of silicon nitride.

Experimental images of a self-rolled inductor, printed on a very thin film of silicon nitride.

Three-dimensional rolled-up inductors have a footprint more than 100 times smaller without sacrificing performance. The researchers published their new design paradigm in the journal Nano Letters.

“It’s a new concept for old technology,” said team leader Xiuling Li, a professor of electrical and computer engineering at the University of Illinois.

Inductors, often seen as the sprawling metal spirals on computer chips, are essential components of integrated circuits. They store magnetic energy, acting as a buffer against changes in current and modulating frequency – especially important in radio-frequency

An experimental image of a self-rolled inductor, printed on a very thin film of silicon nitride.

An experimental image of a self-rolled inductor, printed on a very thin film of silicon nitride.

wireless devices. However, they take up a lot of space. Inductance depends on the number of coils in the spiral, so engineers cannot make them smaller without losing performance.

In addition, the larger the area the inductor occupies, the more it interfaces with the substrate the chip is built on, exacerbating a hindering effect called parasitic capacitance. Researchers have developed some three-dimensional inductor structures to solve the dual problems of space and parasitic capacitance, but these methods are complex and use techniques that are difficult to scale up to manufacturing levels.

The new inductor design uses techniques Li’s group previously developed for making thin films of silicon nitrate, merely tens of nanometers in thickness, that roll themselves up into tubes. The research team used industry-standard two-dimensional processing to pattern metal lines on the film before rolling, creating a spiral inductor.

“We’re making 3-D structures with 2-D processing,” Li said. “Instead of spreading this out in a large area to increase inductance, we can have the same inductance but packed into a much smaller area.”

Using the self-rolling technique, the researchers can shrink the area needed for a radio-frequency inductor to a scant 45 microns by 16 microns – more than 100 times smaller than the area an equivalent flat spiral would require.

The design can be adjusted to fit target parameters including metal thickness and type, frequency, tube diameter and number of turns. According to Li, this technique could be used for capacitors and other integrated circuit elements as well.

Now, Li’s group is working to produce high-performance inductor prototypes, in collaboration with electrical and engineering professor Jose Schutt-Aine. Preliminary experimental data show strong correlation with the modeled designs.

“Once we have optimized this process, we should be able to make an integrated circuit with a completely different platform that could be much smaller,” Li said. “It’s an ambitious goal.”

The National Science Foundation and the Office of Naval Research supported this work. U. of I. visiting researcher Wen Huang, postdoctoral researcher Xin Yu, graduate student Paul Froeter and mechanical science and engineering professor Placid Ferreira were co-authors of this study. Li also is affiliated with the Beckman Institute for Advanced Science and Technology, the Micro and Nanotechnology Lab, and the Frederick Seitz Materials Research Lab, all at the U. of I.

Editor’s note: To reach Xiuling Li, call 217-265-6354; email xiuling@illinois.edu.
The paper, “On-Chip Inductors with Self-Rolled-Up SiNx Nanomembrane Tubes: A Novel Design Platform for Extreme Miniaturization,” is available online.

Read Next

Health and medicine Life sciences Veterinary medicine Two men in a lab. The seated man holds a hologram projection of a brain.

Mutation increases enzyme in mouse brains linked to schizophrenia behaviors

Researchers found a key role for an enzyme regulating glycine in the brain while investigating a rare genetic mutation found in two patients with schizophrenia.

Honors A photo collage featuring all three Sloan Fellowship awardees.

Three Illinois professors named Sloan Research Fellows

Three Illinois scientists are among 126 recipients of the 2025 Sloan Research Fellowships from the Alfred P. Sloan Foundation. According to the foundation, the awardees represent “the very best of early-career science, embodying the creativity, ambition, and rigor that drive discovery forward.” This year’s Illinois recipients are chemistry professors Angad Mehta and Lisa Olshansky, and materials science and engineering professor Yingjie Zhang.

Life sciences Graphic with the title "42nd Insect Fear Film Festival" in a scary font and with a picture of a tarantula.

Insect Fear Film Festival to feature ‘hairy, scary’ tarantulas

CHAMPAIGN, Ill. — The 2025 Insect Fear Film Festival at the University of Illinois Urbana-Champaign will feature “Tarantulas: Hairy, Scary Spiders” as its theme and a Hollywood bug wrangler who works with the 8-legged creatures as a special guest. The festival, which is hosted by the Entomology Graduate Student Association and is in its 42nd […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010