Strategic Communications and Marketing News Bureau

Engineered protein effective against Staphylococcus aureus toxin

David M. Kranz, professor of biochemistry, led the effort to find an effective treatment for exposure to enterotoxin B, a noxious substance produced by the Staphylococcus aureus bacterium and classified as a potential bioterrorism agent.

David M. Kranz, professor of biochemistry, led the effort to find an effective treatment for exposure to enterotoxin B, a noxious substance produced by the Staphylococcus aureus bacterium and classified as a potential bioterrorism agent.

CHAMPAIGN, Ill. – A research team led by the University of Illinois has developed a treatment for exposure to enterotoxin B, a noxious substance produced by the Staphylococcus aureus bacterium. The team engineered a protein, which was successfully tested in rabbits, that could one day be used to treat humans exposed to the enterotoxin.

S. aureus enterotoxin B (SEB) is a common cause of food poisoning, but if it is inhaled or produced during an infection it can elicit a systemic – and sometimes fatal – immune response in humans. In purified form, SEB is listed as a potential bioterrorism agent. Other potent S. aureus enterotoxins include the toxic shock syndrome toxin.

These enterotoxins are classed as superantigens because they set off a massive immune response in humans and other animals. They bind to variable regions of T-cell receptors, stimulating a cascade of events, including the systemic release of inflammatory cytokines. In some cases the powerful immune response leads to toxic shock and death.

The research team, led by U. of I. professor of biochemistry David M. Kranz, included scientists and clinicians from the Boston Biomedical Research Institute and the University of Minnesota Medical School. Their findings appear today in the online edition of Nature Medicine.

The team began by engineering a protein with the same structure as the binding site of the T-cell receptor targeted by SEB. The researchers expressed the engineered protein on the surface of yeast cells (using a process they helped develop, called “yeast display”) and generated mutations meant to increase the protein’s ability to bind SEB. After several rounds of mutagenesis and screening, graduate student Rebecca A. Buonpane developed a soluble protein with an affinity for SEB that was over a million times that of the original.

Structure of an SEB molecule (blue) in complex with the variable region (grey with colored loops) of the T-cell receptor protein. Various amino acid residues in the loops (especially the residues colored red) were mutated to generate a protein that bound SEB with over one million-fold higher binding than the original. Soluble forms of this mutant protein were capable of neutralizing SEB in rabbit models.

Structure of an SEB molecule (blue) in complex with the variable region (grey with colored loops) of the T-cell receptor protein. Various amino acid residues in the loops (especially the residues colored red) were mutated to generate a protein that bound SEB with over one million-fold higher binding than the original. Soluble forms of this mutant protein were capable of neutralizing SEB in rabbit models.

“Our approach was to take these receptors that bind to the toxins and to try to make them higher affinity and therefore act as effective neutralizing agents when delivered in soluble form,” Kranz said. “It’s the binding of the toxin to T-cells that is critical. If you can prevent the toxin from binding to the T-cell receptor then you can prevent it from initiating that cascade.”

The engineered protein prevented the onset of symptoms in rabbits exposed to SEB and reversed the course of the illness in those treated two hours after exposure.

“We were very pleasantly surprised that it showed effectiveness in every rabbit tested,” Kranz said.

He noted that the protein has some potential advantages and disadvantages when compared to antibodies, which might also be used to fight infection with SEB. One advantage is that the engineered protein is small, about 1/10th the size of an antibody. Its size may allow it to penetrate deeper into tissues, and may make it less likely to spark an immune response in animals. The protein can also be produced in large quantities using the bacterium, Escherichia coli.

“E. coli is the cheapest source for making proteins,” Kranz said. “Whenever you can express a protein in E. coli you do so because it is inexpensive, easy and fast.”

Antibodies, on the other hand, can remain in the body for days or weeks, whereas the new protein is cleared within hours. This may make antibodies a better treatment option in some circumstances, Kranz said.

No antibody has yet been developed, however, that has a comparable affinity for SEB.

These studies were supported by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

Kranz is also affiliated with the Institute for Genomic Biology and the College of Medicine. Biochemistry at the U. of I. is in the School of Molecular and Cellular Biology.

Editor’s note: To reach David M. Kranz, call 217-244-2821; e-mail: d-kranz@illinois.edu.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010