Strategic Communications and Marketing News Bureau

Electrons are not enough: Cuprate superconductors defy convention

CHAMPAIGN, Ill. – To engineers, it’s a tale as old as time: Electrical current is carried through materials by flowing electrons. But physicists at the University of Illinois and the University of Pennsylvania found that for copper-containing superconductors, known as cuprates, electrons are not enough to carry the current.

Graph showing the breakdown of Luttinger's theorem in the normal state of cuprate superconductors.  The horizontal axis is the expected number of mobile electrons while the vertical axis is the measured number.  The two should be equal if the theorem were true.

Graph showing the breakdown of Luttinger’s theorem in the normal state of cuprate superconductors. The horizontal axis is the expected number of mobile electrons while the vertical axis is the measured number. The two should be equal if the theorem were true.

“The story of electrical conduction in metals is told entirely in terms of electrons. The cuprates show that there is something completely new to be understood beyond what electrons are doing,” said Philip Phillips, a professor of physics and of chemistry at the U. of I.

In physics, Luttinger’s theorem states that the number of electrons in a material is the same as the number of electrons in all of its atoms added together. Electrons are the sub-atomic particles that carry the current in a conductive material. Much-studied conducting materials, such as metals and semiconductors, hold true to the theorem.

Phillips’ group works on the theory behind high-temperature superconductors. In superconductors, current flows freely without resistance. Cuprate superconductors have puzzled physicists with their superconducting ability since their discovery in 1987.

The researchers developed a model outlining the breakdown of Luttinger’s theorem that is applicable to cuprate superconductors, since the hypotheses that the theorem is built on are violated at certain energies in these materials. The group tested it and indeed found discrepancies between the measured charge and the number of mobile electrons in cuprate superconductors, defying Luttinger.

“This result is telling us that the physics cannot be described by electrons alone,” Phillips said. “This means that the cuprates are even weirder than previously thought: Something other than electrons carries the current.”

“Theorists have suspected that something like this was true but no one has been able to prove it,” Phillips said. “Electrons are charged. Therefore, if an electron does not contribute to the charge count, then there is a lot of explaining to do.”

Now the researchers are exploring possible candidates for current-carriers, particularly a novel kind of excitation called unparticles.

Phillips, U. of I. undergraduate student Kiaran Dave (now a graduate student at MIT) and University of Pennsylvania professor Charles Kane published their findings in the journal Physical Review Letters. The National Science Foundation and the Center for Emergent Superconductivity (through a DOE Energy Frontiers Research Center grant) supported this work.

Editor’s note: To reach Philip Phillips, call 217-244-6703; email dimer@illinois.edu.
The paper, “Absence of Luttinger’s Theorem due to Zeros in the Single-Particle Green Function,” is available online.

Read Next

Engineering Researchers seated behind a hand scale prototype of their new multilayer material.

Study finds that individual layers of synthetic materials can collaborate for greater impact

Millions of years of evolution have enabled some marine animals to grow complex protective shells composed of multiple layers that work together to dissipate physical stress. In a new study, engineers have found a way to mimic the behavior of this type of layered material, such as seashell nacre, by programming individual layers of synthetic material to work collaboratively under stress. The new material design is poised to enhance energy-absorbing systems such as wearable bandages and car bumpers with multistage responses that adapt to collision severity.

Campus news Vikram Adve, Rohit Bhargava, Andrew Suarez and Jennifer Teper.

Faculty members honored with 2025 Campus Awards for Excellence in Faculty Leadership

Four University of Illinois Urbana-Champaign faculty members were honored by the Office of the Provost with the 2025 Campus Awards for Excellence in Faculty Leadership.

Campus news University of Illinois Urbana-Champaign students Lindsay Bitner-Mitchell and Cecelia Escobar have been selected to participate in the U.S.-U.K. Fulbright Commission’s Summer Institutes program. Photo collage: Fred Zwicky

Two Illinois students selected for Fulbright’s Summer Institute to the UK

Two University of Illinois Urbana-Champaign students received places in the Fulbright Commission’s Summer Institutes program.

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010