Strategic Communications and Marketing News Bureau

Electrochemistry helps clean up electronic waste recycling, precious metal mining

CHAMPAIGN, Ill. — A new method safely extracts valuable metals locked up in discarded electronics and low-grade ore using dramatically less energy and fewer chemical materials than current methods, report University of Illinois Urbana-Champaign researchers in the journal Nature Chemical Engineering. 

Researchers

Researchers Johannes Elbert, left, Aderiyike Faniyan, Stephen Cotty and professor Xiao Su.

Gold and platinum group metals such as palladium, platinum and iridium are in high demand for use in electronics. However, sourcing these metals from mining and current electronics recycling techniques is not sustainable and comes with a high carbon footprint. Gold used in electronics accounts for 8% of the metal’s overall demand, and 90% of the gold used in electronics ends up in U.S. landfills yearly, the study reports. 

The study, led by chemical and biomolecular engineering professor Xiao Su, describes the first precious metal extraction and separation process fully powered by the inherent energy of electrochemical liquid-liquid extraction, or e-LLE. The method uses a reduction-oxidation reaction to selectively extract gold and platinum group metal ions from a liquid containing dissolved electronic waste. 

In the lab, the team dissolved catalytic converters, electronic waste such as old circuit boards, and simulated mining ores containing gold and platinum group metals using an organic solvent. The system then streams the dissolved electronics or ores over specialized electrodes in three consecutive extraction columns: one for oxidation, one for leaching and one for reduction. 

“The metals are then converted to solids using electroplating, and the leftover liquid can be treated to capture the remaining metals and recycle the organic solvent,” Su said. “The stream containing the organic extractant is then pumped back to the first extraction column, closing the loop, which greatly minimizes waste.”

A schematic detailing the laboratory apparatus used in the study

This schematic diagram details the electrochemical extraction device used in Su’s laboratory.

An economic analysis of the new approach showed that the new method runs at a cost of two orders of magnitude lower than current industrial processes. “The social value of this work is really its ability to produce green gold quickly in a single step, greatly improving transparency and trust in conflict free recycled precious metals,” said postdoctoral researcher Stephen Cotty, the first author of the study. 

Su said one of the many advantages of this new method is that it can run continuously in a green fashion and is highly selective in terms of how it extracts precious metals. “We can pull gold and platinum group metals out of the stream, but we can also separate them from other metals like silver, nickel, copper and other less valuable metals to increase purity greatly – something other methods struggle with.”

The team said that they are working to perfect this method by improving the engineering design and the solvent selection.

Research scientist Johannes Elbert and graduate student Aderiyike Faniyan contributed to this study. Su also is affiliated with the Beckman Institute for Advanced Science and Technology and a professor of civil and environmental engineering at Illinois.                                                           

The U.S. Department of Energy supported this study. The University of Illinois Urbana-Champaign has filed a provisional patent on the technology presented in this work. The authors declare no competing financial interest. 

Editor’s note:   

To reach Xiao Su, call 217-300-0134; email x2su@illinois.edu.

The paper “Redox-mediated electrochemical liquid-liquid Extraction (e-LLE) for selective metal recovery” is available online. DOI: 10.1038/s44286-024-00049-x.

Read Next

Humanities Diptych image with book cover of "The New Internationals" and a headshot of English professor David Wright Faladé

English professor’s novel tells of love triangle in post-WWII Paris, based on his family history

CHAMPAIGN, Ill. — A new novel by University of Illinois Urbana-Champaign English professor David Wright Faladé tells the story of three people in a love triangle in post-World War II Paris. The characters in “The New Internationals” — a young French woman who has survived the Holocaust, a university student from West Africa and a […]

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010