Strategic Communications and Marketing News Bureau

Difficult dance steps: Team learns how membrane transporter moves

CHAMPAIGN, Ill. — Researchers have tried for decades to understand the undulations and gyrations that allow transport proteins to shuttle molecules from one side of a cell membrane to the other. Now scientists report that they have found a way to penetrate the mystery. They have worked out every step in the molecular dance that enables one such transporter to do its job.

The new findings, reported in the Proceedings of the National Academy of Sciences, will help scientists figure out how other transporters work. The work also offers new insights into multi-drug-resistant (MDR) cancers, some of which use these transporters to export cancer-killing drugs. (Watch a video about the research that includes an animation of the transport protein in action.)

The transporter in the study, MsbA, belongs to an ancient family of proteins that carry large molecules across membranes. It is the bacterial version of a transporter in human cells (called p-glycoprotein) that helps pump drugs out of the cell, said Emad Tajkhorshid, a University of Illinois professor of biochemistry and of pharmacology who led the research. P-glycoprotein is overexpressed in some cancer cells, helping the cells eject drugs meant to kill them.

“There is a lot of research going on in pharmaceutical companies trying to find an inhibitor of p-glycoprotein,” Tajkhorshid said. “If we can understand the transport cycle, we have a much larger repertoire of structures for rational drug design.”

Research on large, membrane-bound proteins like MsbA has always been problematic because they are not easy to crystallize (a common technique for determining a protein’s three-dimensional shape) and each crystal structure reflects only one of the many conformations these shape-shifting proteins undergo, Tajkhorshid said.

“If you want to design a drug for a protein usually you look at the structure and see how you can design a molecule that binds to a particular conformation,” he said. Knowing all the different conformations a protein adopts will offer more targets for drug design, he said.

Before this study, researchers had to guess at the changes that occurred between the transporter’s inward-facing (open to the cell interior) and outward-facing (open to the cell exterior) states, the only two known conformations. Rather than guessing, Tajkhorshid and his co-author, postdoctoral researcher Mahmoud Moradi, took a more painstaking, but ultimately more fruitful, approach. They used molecular dynamics simulations to look at many potential pathways leading from one conformation to the other, simulating individual steps in the transport cycle in atomic-level detail. Then they measured the energetics of each step to discover which steps required the least work, and thus were most likely to occur.

“The main thing that was new here was trying many pathways and using what we call non-equilibrium work – how much work it takes to walk that path – to judge the quality of the pathway,” Tajkhorshid said.

Their simulations included every atom in the protein, the adjoining membrane and the surrounding water molecules – about 250,000 atoms in all, the researchers said.

“It took us many months to search as many possible paths as we could imagine connecting the two end states,” Tajkhorshid said. “And when we did that we slowly realized that we could discover much better pathways” than those that had been proposed before. The result was what the researchers call a “minimum work path” leading from one known protein configuration to the other.

The research indicates that MsbA has components in its interior that are locked together as long as the transporter remains open to the cell’s interior. A series of random undulations gradually lead this middle section to twist, unlocking those components and allowing other changes that eventually open the protein to the outside of the cell.

“We call it a doorknob mechanism,” Tajkhorshid said. “It’s locked, so you have to twist it first before you open it.”

The new approach will aid other studies of complex protein transporters whose behavior has baffled researchers, Tajkhorshid said.

“This is the first time that we are characterizing a very complex structural transition at atomic-level resolution for a large protein,” he said.

Tajkhorshid is an affiliate of the Beckman Institute for Advanced Science and Technology at the U. of I.

The National Institutes of Health (grants U54-GM087519, R01-GM086749 and P41-GM104601) supported this research

Editor’s note: To reach Emad Tajkhorshid (pronounced uh-MOD tazh-CORE-shid), call 217-244-6914; email tajkhors@illinois.edu.

The paper, “Mechanistic Picture for Conformational Transition of a Membrane Transporterat Atomic Resolution,” is available online or from the U. of I. News Bureau.

Read Next

Social sciences Sociology professor Brittney Miles shown in profile with a Black history mural at the Bruce D. Nesbitt African American Cultural Center on campus.in the background.

Black women’s beauty, fashion choices intertwined with Black history, politics

CHAMPAIGN, Ill. — Black women’s beauty and fashion are complex, meaningful acts, deliberate strategies for engaging with the world that make bold statements about identity, political resistance and empowerment, Black women said in a recent study. Researcher Brittney Miles, a sociology professor at the University of Illinois Urbana-Champaign, interviewed 39 Black women about their fashion […]

Uncategorized Rows of MRI images from two patients with brain tumors

New MRI approach maps brain metabolism, revealing disease signatures

CHAMPAIGN, Ill. — A new technology that uses clinical MRI machines to image metabolic activity in the brain could give researchers and clinicians unique insight into brain function and disease, researchers at the University of Illinois Urbana-Champaign report. The non-invasive, high-resolution metabolic imaging of the whole brain revealed differences in metabolic activity and neurotransmitter levels […]

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010