Strategic Communications and Marketing News Bureau

Designer enzyme conquers sulfite reduction, a bottleneck in environmental cleanup

CHAMPAIGN, Ill. — Researchers have cleared one hurdle toward environmental cleanup of certain contaminants with a newly designed synthetic enzyme that reduces the compound sulfite to sulfide – a notoriously complex multistep chemical reaction that has eluded chemists for years.

In the journal Science, chemists at the University of Illinois at Urbana-Champaign described their enzyme containing two different iron-containing centers linked together by a single enzyme.

Sulfite reduction, a common oxidation-reduction – or redox reaction – can interfere with the cleanup of a major class of environmental contaminants including nitrate, arsenate and perchlorate. These contaminants enter the environment as byproducts from the production of rocket fuel, munitions and fertilizer. Sulfite also occurs naturally and interferes with the elimination of more toxic compounds, and chemists have not been able create catalysts to remove sulfite because it requires multiple steps of reactions using a complex active site that is difficult to design and synthesize.

 “Many biochemical reactions require a series of enzymes working together to carry out multistep reactions, but sulfite reduction uses only one enzyme, called sulfite reductase, that does all of the work,” said Yi Lu, a professor of chemistry at Illinois. “Nature created a very complex enzyme structure to handle this chemical reaction, and researchers have not been able to replicate it until now.”

Past groups that have attempted to build a synthetic sulfite-reducing enzyme have concentrated on making structural models that look like the active site of native enzymes, said chemistry graduate student Evan Mirts. For this study, the team used an enzyme as a scaffold to anchor clusters of iron and sulfur atoms that behave like tiny molecular batteries, transferring the electrons needed to push the redox reaction.

“I believe we were successful because we focused on the functionality of our synthetic enzyme, not rebuilding the simplest possible structure,” Mirts said. “We accounted for interactions that are typically thought of as secondary, or less important to the overall redox reaction. It turns out that these interactions are extremely important.”

“When we accounted for those so-called weaker interactions in our designed enzyme, we suddenly saw redox reaction activity that was very similar to that of the naturally occurring sulfite-reducing enzyme,” said Lu, also a joint appointee at the U.S. Department of Energy’s Pacific Northwest National Laboratory

The team envisions their newly developed enzyme inspiring a new generation of catalysts to help clean up toxic waste in the environment and help improve the quality of petroleum products.

“Aside from the practical applications, I think our work here has advanced the frontier of artificial enzyme design in terms deciphering the complexity of redox reactions and designing multifactor catalysts with very high activity,” Lu said. “With the successful demonstration of this system, we can now begin to design many other multicofactor enzymes that perform even more complex, difficult reactions that we could only dream of before.”

The U.S. National Institutes of Health and the DOE supported this study through the Center for Advanced Bioenergy and Bioproducts Innovation.

 

 

Editor’s notes:

Please click here to see a video about this research.

To reach Yi Lu, call 217-333-2619; yi-lu@illinois.edu.

The paper “A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme” is available online and from the U. of I. News Bureau. DOI: 10.1126/science.aat8474

Read Next

Campus news

Awards honor excellence in instruction

CHAMPAIGN, Ill. — The University of Illinois Urbana-Champaign each year presents Campus Awards for Excellence in Instruction to exceptional faculty and staff members, graduate teaching assistants and advisors campuswide. This year’s recipients are being honored at a ceremony on April 15.  Awardees are cited for sustained excellence and innovation in undergraduate and graduate teaching, undergraduate […]

Campus news

Sixteen employees honored with 2025 Chancellor’s Staff Excellence Award

CHAMPAIGN, Ill. — Sixteen academic professionals and civil service staff members have received the Chancellor’s Staff Excellence Award recognizing exceptional performance at the University of Illinois Urbana-Champaign. A CSEA committee recommends finalists, who are approved by Illinois Chancellor Robert Jones. Each awardee receives $1,500 and a commemorative award. Two staff members received awards in each […]

Engineering Life sciences Science and technology Portrait of Yong-Su Jin in the lab wearing a white lab coat and holding two flasks.

Study: Microalgae and bacteria team up to convert CO2 into useful products

CHAMPAIGN, Ill. — Scientists have spent decades genetically modifying the bacterium Escherichia coli and other microbes to convert carbon dioxide into useful biological products. Most methods require additional carbon sources, however, adding to the cost. A new study overcomes this limitation by combining the photosynthetic finesse of a single-celled algae with the production capabilities of […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010