Strategic Communications and Marketing News Bureau

Deformation fingerprints will help researchers identify, design better metallic materials

CHAMPAIGN, Ill. — Engineers can now capture and predict the strength of metallic materials subjected to cycling loading, or fatigue strength, in a matter of hours – not the months or years it takes using current methods.

In a new study, researchers from the University of Illinois Urbana-Champaign report that automated high-resolution electron imaging can capture the nanoscale deformation events that lead to metal failure and breakage at the origin of metal failure. The new method helps scientists to rapidly predict the fatigue strength of any alloy, and design new materials for engineering systems subject to repeated loading for medical, transportation, safety, energy and environmental applications.

The findings of the study, led by materials science and engineering professors Jean-Charles Stinville and Marie Charpagne, are published in the journal Science.

Fatigue of metals and alloys – such as the repeated bending of a metal paperclip that leads to its fracture – is the root cause of failure in many engineering systems, Stinville said. Defining the relationship between fatigue strength and the microstructure is challenging because metallic materials display complex structures with features ranging from the nanometer to the centimeter scale.

“This multiscale issue is a long-standing problem because we’re trying to observe sparse, nanometer-sized events that control macroscopic properties and can be captured only by investigating large areas with fine resolution,” Charpagne said. “The current method for determining fatigue strength in metals uses traditional mechanical testing that is costly, time-consuming and does not provide a clear picture of the root cause of failure.”

In the current study, the researchers found that the statistical investigation of the nanoscale events that appear at the metal surface when deformed can inform fatigue strength of metals. The team is the first to uncover this relationship using automated high-resolution digital image correlation collected in the scanning electron micrsocope – a technique that compiles and compares a series of images recorded during deformation, Stinville said. The researchers demonstrated this relation on alloys of aluminum, cobalt, copper, iron, nickel, steel and refractory alloys used in a large variety of key engineering applications.  

In the foreground, a researcher holds a peice of aircraft engine alloy broken in one of their experiments. In the background is a compliation of images taken with a scanning electron microsope and a show a visual representation of atomic slip -- the nanoscale mechanism behind metal failure.

The foreground shows a fractured sample of an alloy used in aircraft engines. In the background, each color represents an orientation of the metal’s crystal structure. The gray lines indicate a specific measurement and inform how the metal deforms. The color of the lines indicates how intensely the atoms have been disrupted as a result of mechanical loading.

“What is remarkable is that the nanoscale deformation events that appear after a single deformation cycle correlate with the fatigue strength that inform the life of a metallic part under a large number of cycles,” Stinville said. “Discovering this correlation is like having access to a unique deformation fingerprint that can help us rapidly predict the fatigue life of metallic parts.”

“Designing metallic materials with higher fatigue strength means safer, more resilient and durable materials,” Charpagne said. “This work has societal, environmental and economic impacts because it sheds light on the micro and nanoscale parameters to tune to design materials with a longer life. I think this work will define a new paradigm in alloy design.”

This study was performed in collaboration with researchers from the University of California, Santa Barbara and the Universite de Poitiers, France.

The Department of Defense, the Office of Naval Research and the department of materials science and engineering at Illinois supported this research.

Editor’s notes:

To reach Jean-Charles Stinville, email jcstinv@illinois.edu.

The paper “On the origins of fatigue strength in crystalline metallic materials” is available online and from the U. of I. News Bureau.

DOI: 10.1126/science.abn0392

Read Next

Agriculture Graduate student Andrea Jimena Valdés-Alvarado, left, and food science professor Elvira Gonzalez de Mejia standing in the Edward R. Madigan Laboratory holding samples of the legume pulses they used in the study.

Fermenting legume pulses boosts their antidiabetic, antioxidant properties

CHAMPAIGN, Ill. — Food scientists at the University of Illinois Urbana-Champaign identified the optimal fermentation conditions for pulses ― the dried edible seeds of legumes ― that increased their antioxidant and antidiabetic properties and their soluble protein content. Using the bacteria Lactiplantibacillus plantarum 299v as the microorganism, the team fermented pulses obtained from varying concentrations […]

Expert viewpoints Ukraine’s daring drone attack deep within Russia is significant but not war-redefining, and may hinder U.S. efforts to end the war, says University of Illinois Urbana-Champaign political science professor and international relations expert Nicholas Grossman.

Does Ukraine drone attack inside Russia augur new era of asymmetric warfare?

Champaign, Ill. — University of Illinois Urbana-Champaign political science professor Nicholas Grossman is the author of “Drones and Terrorism: Asymmetric Warfare and the Threat to Global Security” and specializes in international relations. Grossman spoke with News Bureau business and law editor Phil Ciciora about “Operation Spiderweb,” Ukraine’s expertly plotted drone attack inside the Russian mainland. […]

Behind the scenes Photo of a man with his leg lifted and his boot in the foreground, while another man in the foreground reacts.

Staging a fight

CHAMPAIGN, Ill. — A group of theatre students is gathered in a rehearsal room at Krannert Center for the Performing Arts at the University of Illinois Urbana-Champaign. They are each paired with a partner, and I watch as they shove each other in the chest, knee one another in the gut and then punch their […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010