Strategic Communications and Marketing News Bureau

Copolymer helps remove pervasive PFAS toxins from environment

CHAMPAIGN, Ill. — Researchers have demonstrated that they can attract, capture and destroy PFAS – a group of federally regulated substances found in everything from nonstick coatings to shampoo and nicknamed “the forever chemicals” due to their persistence in the natural environment.

Using a tunable copolymer electrode, engineers from the University of Illinois at Urbana-Champaign captured and destroyed perfluoroalkyl and polyfluoroalkyl substances present in water using electrochemical reactions. The proof-of-concept study is the first to show that copolymers can drive electrochemical environmental applications, the researchers said.

The results of the study are published in the journal Advanced Functional Materials.

“Exposure to PFAS has gained intense attention recently due to their widespread occurrence in natural bodies of water, contaminated soil and drinking water,” said Xiao Su, a professor of chemical and biomolecular engineering who led the study in collaboration with civil and environmental engineering professors Yujie Men and Roland Cusick.

PFAS are typically present in low concentrations, and devices or methods designed to remove them must be highly selective toward them over other compounds found in natural waters, the researchers said. PFAS are electrically charged, held together by highly stable bonds, and are water-resistant, making them difficult to destroy using traditional waste-disposal methods.

“We have found a way to tune a copolymer electrode to attract and adsorb – or capture – PFAS from water,” Su said. “The process not only removes these dangerous contaminants, but also destroys them simultaneously using electrochemical reactions at the opposite electrode, making the overall system highly energy-efficient.”

To evaluate the method, the team used various water samples that included municipal wastewater, all spiked with either a low or moderate concentration of PFAS.

 “Within three hours of starting the electrochemical adsorption process in the lab, we saw a 93% reduction of PFAS concentration in the low concentration spiked samples and an 82.5% reduction with a moderate concentration spiked samples, which shows the system can be efficient for different contamination contexts – such as in drinking water or even chemical spills,” Su said.

Based on concepts first proposed in Su’s previous work with arsenic removal, the process combines the separation and reaction steps in one device. “This is an example of what we call processes intensification, which we believe is an important approach for addressing environmental concerns related to energy and water,” Su said.

The team plans to continue to work with various emerging contaminants, including endocrine disruptors. “We are also very interested in seeing how these basic copolymer concepts might work outside of environmental systems and help perform challenging chemical separations, such as drug purification in the pharmaceutical industry,” Su said.

Postdoctoral researcher Kwiyong Kim and graduate student Paola Baldaguez Medina are the lead authors of the study. Postdoctoral researchers Johannes Elbert and Emmanuel Kayiwa also contributed to the study.

The U. of I., the National Science Foundation and the Illinois Water Resources Center supported this study.

To reach Xiao Su, call 217-300-0134; email x2su@illinois.edu.  

The paper “Molecular tuning of redox-copolymers for selective electrochemical remediation” is available online and from the U. of I. News Bureau. DOI: 10.1002/adfm.202004635.

Read Next

Engineering Tilted image of used batteries.

Study shows new hope for commercially attractive lithium extraction from spent batteries

A new study shows that lithium — a critical element used in rechargeable batteries and susceptible to supply chain disruption — can be recovered from battery waste using an electrochemically driven recovery process. The method has been tested on commonly used types of lithium-containing batteries and demonstrates economic viability with the potential to simplify operations, minimize costs and increase the sustainability and attractiveness of the recovery process for commercial use.

Health and Medicine Research team in the lab.

Study: A cellular protein, FGD3, boosts breast cancer chemotherapy, immunotherapy

CHAMPAIGN, Ill. — A naturally occurring protein that tends to be expressed at higher levels in breast cancer cells boosts the effectiveness of some anticancer agents, including doxorubicin, one of the most widely used chemotherapies, and a preclinical drug known as ErSO, researchers report. The protein, FGD3, contributes to the rupture of cancer cells disrupted […]

Arts Photo from "Anastasia: The Musical" showing the Romanov family in period costumes.

Lyric Theatre’s production of “Anastasia: The Musical” tells story of loss, survival and reinvention

CHAMPAIGN, Ill. — The Lyric Theatre’s production of “Anastasia: The Musical” is a story with romance and mystery, an appealing score and several big dance numbers. It also is a story of loss, survival and reinvention. The musical opened on Nov. 11 and will be performed Nov. 13-15 at Krannert Center for the Performing Arts. […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010