Strategic Communications and Marketing News Bureau

Byproduct of water-disinfection process found to be highly toxic

Genetic toxicologist Michael Plewa and Elizabeth Wagner, principal research specialist, both in the department of crop scieces, collaborated with three EPA researchers on research into a disinfection byproduct found in drinking water treated with chloramines.

Genetic toxicologist Michael Plewa and Elizabeth Wagner, principal research specialist, both in the department of crop scieces, collaborated with three EPA researchers on research into a disinfection byproduct found in drinking water treated with chloramines.

CHAMPAIGN, Ill. – A recently discovered disinfection byproduct (DBP) found in U.S. drinking water treated with chloramines is the most toxic ever found, says a scientist at the University of Illinois at Urbana-Champaign who tested samples on mammalian cells.

The discovery raises health-related questions regarding an Environmental Protection Agency plan to encourage all U.S. water-treatment facilities to adopt chlorine alternatives, said Michael J. Plewa [PLEV-uh], a genetic toxicologist in the department of crop sciences.

 

“This research says that when you go to alternatives, you may be opening a Pandora’s box of new DBPs, and these unregulated DBPs may be much more toxic, by orders of magnitude, than the regulated ones we are trying to avoid.”

Plewa and colleagues, three of them with the EPA, report on the structure and toxicity of five iodoacids found in chloramines-treated water in Corpus Christi, Texas, in this month’s issue of the journal Environmental Science & Technology. The findings, which appeared online in advance, already have prompted a call from the National Rural Water Association for a delay of EPA’s Stage 2 rule aimed at reducing the amount of previously identified toxic DBPs occurring in chlorine-treated water.

“The iodoacids may be the most toxic family of DBPs to date,” Plewa said in an interview. One of the five detailed in the study, iodoacetic acid, is the most toxic and DNA-damaging to mammalian cells in tests of known DBPs, he said.

“These iodoacetic acids raise new levels of concerns,” he said. “Not only do they represent a potential danger because of all the water consumed on a daily basis, water is recycled back into the environment. What are the consequences? The goal of Stage 2 is to reduce DBPs, particularly the ones that fall under EPA regulations, and especially the ones that have been structurally identified and found to be toxic.”

The use of chloramines, a combination of chlorine and ammonia, is one of three alternatives to chlorine disinfectant, which has been used for more than 100 years. Other alternatives are chlorine-dioxide and ozone. All treatments react to compounds present in a drinking water source, resulting in a variety of chemical disinfectant byproducts.

Some 600 DBPs have been identified since 1974, Plewa said. Scientists believe they’ve identified maybe 50 percent of all DBPs that occur in chlorine-treated water, but only 17 percent of those occurring in chloramines-treated water, 28 percent in water treated with chlorine-dioxide, and just 8 percent in ozone-treated water. Of the structurally identified DBPs, he said, the quantitative toxicity is known for maybe 30 percent.

Some DBPs in chlorine-treated water have been found to raise the risks of various cancers, as well as birth and developmental defects.

Corpus Christi’s water supply has high levels of bromide and iodide because of the chemical makeup of the ancient seabed under the water source. Local water sources lead to different DBPs. Whether the types of iodoacids found in Corpus Christi’s treated water might be simply a reflection of local conditions, and thus a rare occurrence, is not known.

The DBPs in Corpus Christi’s water were found as part of an EPA national occurrence survey of selected public water-treatment plants done in 2002. The survey reported on the presence of 50 high-priority DBPs based on their carcinogenic potential. The report, published in April, also identified 28 new DBPs.

Because so many new DBPs are being found in drinking water, Plewa said, two basic questions should be asked: How many are out there? And how many new ones will be formed as chlorine treatments are replaced with alternative methods?

 

Co-authors with Plewa on the EPA-funded study were Elizabeth D. Wagner, a scientist in the department of crop sciences at Illinois; Susan D. Richardson and Alfred D. Thruston Jr. of the EPA’s National Exposure Research Laboratory; Yin-Tak Woo of the EPA’s Risk Assessment Division, Office of Pollution Prevention and Toxics; and A. Bruce McKague of the CanSyn Chemical Corp. of Toronto.

Read Next

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Honors portraits of four Illinois researchers

Four Illinois researchers receive Presidential Early Career Award

CHAMPAIGN, Ill. — Four researchers at the University of Illinois Urbana-Champaign were named recipients of the Presidential Early Career Award for Scientists and Engineers, the highest honor bestowed by the U.S. government on young professionals at the outset of their independent research careers. The winners this year are health and kinesiology professor Marni Boppart, physics professor Barry Bradlyn, chemical and biomolecular engineering professor Ying […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010