Strategic Communications and Marketing News Bureau

Breaking the temperature barrier in small-scale materials testing

CHAMPAIGN, Ill. — Researchers have demonstrated a new method for testing microscopic aeronautical materials at ultra-high temperatures. By combining electron microscopy and laser heating, scientists can evaluate these materials much more quickly and inexpensively than with traditional testing.

The findings of the new study, conducted by Shen Dillon, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign, and collaborators from Sandia National Laboratories, are published in the journal Nano Letters.

A decade ago, advancements in aeronautical materials involved testing large, expensive models and years of development. Scientists and engineers now use micro-scale experimentation to help create new materials and understand the chemical and physical properties that lead to material failure.

“Micro-scale mechanical testing provides opportunities to break the materials down into their components and see defects at the atomic level,” Dillon said.

Until now, researchers have been unable to conduct successful micro-scale materials tests at the extreme temperatures experienced by critical components during flight.

 “Unfortunately, it’s really difficult to perform experiments with new materials or combinations of existing materials at ultra-high temperatures above 1,000 C because you run into the problem of destroying the testing mechanisms themselves,” Dillon said.  

This temperature barrier has slowed the development of new materials for commercial applications such as rockets and vehicles, which require testing at temperatures well above the current research’s limit of “a few hundred degrees Celsius,” he said. “The method we demonstrate in the paper will significantly reduce the time and expense involved in making these tests possible.” 

Their ultra-high temperature test combined two commonly used tools in a unique way. Using a transmission electron microscope and targeted laser heating, they were able to see and control where and how the material deformed at the highest temperature possible before the sample evaporated.

“We were able to bring the laser together with the mechanical tester so precisely with the TEM that we could heat the sample without overheating the mechanical tester,” Dillon said. “Our test allows you to grow a thin film of the material without any special processing and then put it in the microscope to test a number of different mechanical properties.”

As proof of concept, the study tested zirconium dioxide – used in fuel cells and thermal barrier coatings – at temperatures up to 2,050 C, “a temperature well above anything that you could do previously,” Dillon said. 

Dillon says the paper will result in “more people using this technique for high-temperature tests in the future because they are much easier to do and the engineering interest is definitely there.”

Dillon also is affiliated with the Materials Research Lab at Illinois. The National Science Foundation and Army Research Office supported this study.

To reach Shen Dillon, call 217-244-5622; email sdillon@illinois.edu.  

The paper “In situ transmission electron microscopy for ultrahigh temperature mechanical testing of ZrO2” is available online and from the U. of I. News Bureau. DOI: 10.1021/acs.nanolett.9b04205

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010