Strategic Communications and Marketing News Bureau

Astronomers find stellar cradle where planets form

A rare, infrared view of the very young star L1157 with its flaring jets from NASA's Spitzer Space Telescope (right) shows us what our own solar system might have looked like billions of years ago. In visible light, this star and its surrounding regions appear black (left). The reddish haze all around the Spitzer image (right) is dust. The white dots are other stars, mostly in background. The Spitzer image has infrared light of 8 microns is colored red; 4.5-micron infrared light is green; and 3.6-micron infrared light is blue. The visible-light picture is from the Palomar Observatory-Space Telescope Science Institute Digitized Sky Survey. Blue visible-light is blue; red visible light is green, and near-infrared light is red.

A rare, infrared view of the very young star L1157 with its flaring jets from NASA’s Spitzer Space Telescope (right) shows us what our own solar system might have looked like billions of years ago. In visible light, this star and its surrounding regions appear black (left). The reddish haze all around the Spitzer image (right) is dust. The white dots are other stars, mostly in background. The Spitzer image has infrared light of 8 microns is colored red; 4.5-micron infrared light is green; and 3.6-micron infrared light is blue. The visible-light picture is from the Palomar Observatory-Space Telescope Science Institute Digitized Sky Survey. Blue visible-light is blue; red visible light is green, and near-infrared light is red.

CHAMPAIGN, Ill. – Astronomers at the University of Illinois have found the first clear evidence for a cradle in space where planets and moons form. The cradle, revealed in photographs taken with NASA’s Spitzer Space Telescope, consists of a flattened envelope of gas and dust surrounding a young protostar.

“We are seeing this object in the early stages of stellar birth,” said U. of I. astronomy professor Leslie Looney, the lead author of a paper accepted for publication in Astrophysical Journal Letters. “Eventually, the protostar will form into a star much like our sun, and the disk will form into planets and moons.”

Located about 800 light-years away in the constellation Cepheus, the object is obscured by dust and therefore invisible to the eye. However, the Spitzer Space Telescope’s sensitive infrared camera can penetrate the dust, and reveal the structures within.

The brightest structure consists of an enormous, almost linear flow of shocked molecular hydrogen gas erupting from the protostar’s two magnetic poles. These bipolar jets are so long, light would take about 1 1/2 years to travel from one end to the other.

In star-formation theory, a cloud of gas and dust collapses to form a star and its planets. As the cloud collapses, it begins to rotate faster and faster, like a pirouetting ice skater pulling in her arms. The force of the growing magnetic field ejects some of the gas and dust along the magnetic axis, forming the bipolar jets seen in the photograph.

Astronomy professor Leslie Looney, left, and graduate student Woojin Kwon have found the first clear evidence for a cradle in space where planets and moons form.

Astronomy professor Leslie Looney, left, and graduate student Woojin Kwon have found the first clear evidence for a cradle in space where planets and moons form.

“If material was not shed in this fashion, the protostar’s spin would speed up so fast it would break apart,” Looney said.

The planet-forming region is perpendicular to, and roughly centered on the polar jets. There, seen in silhouette against a bright background of galactic infrared emission, is the flattened disk of a circumstellar envelope.

Theorized, but never before seen, the flattened disk is an expected outcome for cloud-collapse theories that include magnetic fields or rotation.

“Some theories had predicted that envelopes flatten as they collapse onto their stars and surrounding planet-forming disks,” Looney said, “but we hadn’t seen any strong evidence of this until now.”

With Looney, co-authors of the paper are former undergraduate student John Tobin (now at the University of Michigan) and graduate student Woojin Kwon.

The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory at the California Institute of Technology. Funding was provided by NASA.

To reach Leslie Looney, call 217-244-3615; e-mail: lwl@illinois.edu

Subscribe to this RSS Feed | Email to a friend | View the RSS Feed

Read Next

Health and medicine Dr. Timothy Fan, left, sits in a consulting room with the pet owner. Between them stands the dog, who is looking off toward Fan.

How are veterinarians advancing cancer research in dogs, people?

CHAMPAIGN, Ill. — People are beginning to realize that dogs share a lot more with humans than just their homes and habits. Some spontaneously occurring cancers in dogs are genetically very similar to those in people and respond to treatment in similar ways. This means inventive new treatments in dogs, when effective, may also be […]

Honors From left, individuals awarded the 2025 Campus Awards for Excellence in Public Engagement are Antoinette Burton, director of the Humanities Research Institute; Ariana Mizan, undergraduate student in strategy, innovation and entrepreneurship; Lee Ragsdale, the reentry resource program director for the Education Justice Project; and Ananya Yammanuru, a graduate student in computer science. Photos provided.

Awards recognize excellence in public engagement

The 2025 Campus Awards for Excellence in Public Engagement were recently awarded to faculty, staff and community members who address critical societal issues.

Uncategorized Portrait of the researchers standing outside in front of a grove of trees.

Study links influenza A viral infection to microbiome, brain gene expression changes

CHAMPAIGN, Ill. — In a study of newborn piglets, infection with influenza A was associated with disruptions in the piglets’ nasal and gut microbiomes and with potentially detrimental changes in gene activity in the hippocampus, a brain structure that plays a central role in learning and memory. Maternal vaccination against the virus during pregnancy appeared […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010