Strategic Communications and Marketing News Bureau

As Arctic temperatures rise, tundra fires increase, researchers find

CHAMPAIGN, lll. – In September, 2007, the Anaktuvuk River Fire burned more than 1,000 square kilometers of tundra on Alaska’s North Slope, doubling the area burned in that region since record keeping began in 1950. A new analysis of sediment cores from the burned area revealed that this was the most destructive tundra fire at that site for at least 5,000 years. Models built on 60 years of climate and fire data found that even moderate increases in warm-season temperatures in the region dramatically increase the likelihood of such fires.

The study was published this October in the Journal of Geophysical Research.

After the Anaktuvuk fire, University of Illinois plant biology professor Feng Sheng Hu sought to answer a simple question: Was this seemingly historic fire an anomaly, or were large fires a regular occurrence in the region?

Plant biology professor Feng Sheng Hu, in 2008, with helicopter pilot Gerard Loidl, who was hired to take Hu to the site of the historic Anaktuvuk River Fire. Hu is holding a core sample he collected from an affected lake.

Plant biology professor Feng Sheng Hu, in 2008, with helicopter pilot Gerard Loidl, who was hired to take Hu to the site of the historic Anaktuvuk River Fire. Hu is holding a core sample he collected from an affected lake.

“If such fires occur every 200 years or every 500 years, it’s a natural event,” Hu said. “But another possibility is that these are truly unprecedented events caused by, say, greenhouse warming.”

On a trip to Alaska in 2008, Hu chartered a helicopter to the region of the Anaktuvuk fire and collected sediment cores from two affected lakes. He and his colleagues analyzed the distribution of charcoal particles in these cores and used established techniques to determine the approximate ages of different sediment layers.

The team found no evidence of a fire of similar scale and intensity in sediments representing roughly 5,000 years at that locale.

The researchers then analyzed 60 years of fire, temperature and precipitation records from the Alaskan tundra to determine whether specific climate conditions prevailed in years with significant tundra fires. They developed a model relating the tundra area burned in Alaska each year to the mean temperature and precipitation in the warmest period of the year: June through September.

This analysis uncovered a striking pattern, Hu said.

“There is a dramatic, nonlinear relationship between climate conditions and tundra fires, and what one may call a tipping point,” he said. Once the temperature rises above a mean threshold of 10 degrees Celsius (50 degrees Fahrenheit) in the

June-through-September time period, he said, “the tundra is just going to burn more frequently.”

For the past 60 years, annual mean temperatures during this warm season have fluctuated between about 6 and 9 degrees Celsius (42.8 to 48.2 degrees Fahrenheit), with temperatures trending upward since 1995. In 2007, the year of the historic fire, the mean temperature was a record 11.1 degrees Celsius, while precipitation and soil moisture dipped to an all-time low.

Higher precipitation, if it occurs, could dampen the effects of higher temperatures, but only to a limited extent, said Philip Higuera, a professor of forest ecology and biogeosciences at the University of Idaho and a co-author on the study.

“As temperature rises, so too does evaporation,” he said. “So even if future precipitation increases, it’s likely that increased evaporation will result in overall lower moisture availability. This affects plants, but it also makes dead vegetation more flammable and fire prone.” The study team also included researchers from the University of Alaska Fairbanks, Neptune and Company, and the University of Washington.

The National Science Foundation and the Joint Fire Science Program supported this study.

Editor’s note: To reach Feng Sheng Hu, call 217-244-2982; e-mail fhu@illinois.edu. The paper,“Tundra Burning in Alaska: Linkages to Climatic Change and Sea Ice Retreat,” is available online or from the U. of I. News Bureau.

Read Next

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Engineering Civil and Environmental Engineering Professor Nishant Garg, center, is joined by fellow researchers, from left: Yujia Min, Hossein Kabir, Nishant Garg, center, Chirayu Kothari and M. Farjad Iqbal, front right. In front are examples of clay samples dissolved at different concentrations in a NaOH solution. The team invented a new test that can predict the performance of cementitious materials in mere 5 minutes. This is in contrast to the standard ASTM tests, which take up to 28 days. This new advance enables real-time quality control at production plants of emerging, sustainable materials. Photo taken at the University of Illinois Urbana-Champaign on Monday, Feb. 3, 2025. (Photo by Fred Zwicky / University of Illinois Urbana-Champaign)

Researchers develop a five-minute quality test for sustainable cement industry materials

A new test developed at the University of Illinois Urbana-Champaign can predict the performance of a new type of cementitious construction material in five minutes — a significant improvement over the current industry standard method, which takes seven or more days to complete. This development is poised to advance the use of next-generation resources called supplementary cementitious materials — or SCMs — by speeding up the quality-check process before leaving the production floor.

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010