Strategic Communications and Marketing News Bureau

Antibodies from original strain COVID-19 infection don’t bind to variants, study finds

CHAMPAIGN, Ill. — People infected with the original strain of the virus that causes COVID-19 early in the pandemic produced a consistent antibody response, making two main groups of antibodies to bind to the spike protein on the virus’s outer surface. However, those antibodies don’t bind well to newer variants, a new study from the University of Illinois Urbana-Champaign found.

Characterizing what kinds of antibodies the body is most likely to make to fight a natural infection is an important roadmap for vaccine design, says study leader Nicholas Wu, an Illinois professor of biochemistry. His research team published its findings in the journal Nature Communications.

“Antibody response is quite relevant to everything from understanding natural infection and how we recover from infection to vaccine design. The body has the capability to produce diverse antibody responses – it’s estimated we could make a trillion different antibodies. So when you see people are making quite similar antibodies to a particular virus, we call it convergent antibody response,” said Wu, who also is affiliated with the Carle Illinois College of Medicine. “That means we can design vaccines trying to elicit this kind of antibody response, and that probably is going to improve the responsiveness of more individuals to the vaccine.”

The researchers mined published papers about COVID-19 patients for data about the sequence of the antibodies they produced. They focused on antibodies against the spike protein, the part of the virus that binds to receptors on human cells to infect them. The spike protein is the target of most vaccines.

They found that many antibody sequences converged into two main groups, indicating a consistent human immune response to the virus, said graduate student Timothy Tan, the first author of the study.

“We really focused on characterizing the antibodies created in those infected with the original strain of the virus,” Tan said. “Before we started the study, variants weren’t much of a problem. As they emerged, we wanted to see whether the common antibodies we identified were able to bind to newer variants.”

The researchers studied the convergent antibodies’ ability to bind to several variants and found that they no longer bound to some. The finding has implications for the ability of new variants to reinfect people who contracted earlier versions of the virus, as well as for the continuing efficacy of vaccines and the design of possible vaccine boosters, Wu said.

“Even though this antibody response is very common with the original strain, it doesn’t really interact with variants,” Wu said. “That, of course, raises the concern of the virus evolving to escape the body’s main antibody response. Some antibodies should still be effective – the body makes antibodies to many parts of the virus, not only the spike protein – but the particular groups of antibodies that we saw in this study will not be as effective.”

The researchers said they would like to conduct similar studies characterizing antibody responses to delta and other variants, to see whether they also produce a convergent response and how it differs from the original strain.

““We want to design vaccines and boosters, if needed, that can protect a majority of the population,” Tan said. “We expect that the antibody response to those variants would be quite different. When we have more data about the antibodies of patients who have been infected with variants, understanding the difference in the immune response is one of the directions that we would like to pursue.” 

The National Institutes of Health and the Bill and Melinda Gates Foundation supported this work.

Editor’s Note: To reach Nicholas Wu, email nicwu@illinois.edu.    

The paper “Sequence signatures of two public antibody clonotypes that bind SARS-CoV-2 receptor binding domain” is available online.

DOI: 10.1038/s41467-021-24123-7

Read Next

Life sciences Photo of Michael Ward standing in tall grass on a riverbank.

How are migrating wild birds affected by H5N1 infection in the U.S.?

Each spring, roughly 3.5 billion wild birds migrate from their warm winter havens to their breeding grounds across North America, eating insects, distributing plant seeds and providing a variety of other ecosystem services to stopping sites along the way. Some also carry diseases like avian influenza, a worry for agricultural, environmental and public health authorities. […]

Announcements Marcelo Garcia, professor of civil and environmental engineering at The Grainger College of Engineering.

Illinois faculty member elected to National Academy of Engineering

Champaign, Ill. — Marcelo Garcia, a professor of civil and environmental engineering in The Grainger College of Engineering, has been elected to the National Academy of Engineering.

Social sciences Male and female student embracing on the quad with flowering redbud tree and the ACES library in the background. Photo by Michelle Hassel

Dating is not broken, but the trajectories of relationships have changed

CHAMPAIGN, Ill. — According to some popular culture writers and online posts by discouraged singles lamenting their inability to find romantic partners, dating is “broken,” fractured by the social isolation created by technology, pandemic lockdowns and potential partners’ unrealistic expectations. Yet two studies of college students conducted a decade apart found that their ideas about […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010