Strategic Communications and Marketing News Bureau

Advanced electrode to help remediation of stubborn new ‘forever chemicals’

CHAMPAIGN, Ill. — As new environmental regulations are rolling out to mitigate the industry-retired long-chain chemicals known as PFAS in drinking water, there are concerns regarding a new breed of “forever chemicals” called short-chain PFAS. Research from the University of Illinois Urbana-Champaign is helping shift the focus to include mitigation of the chemicals – which researchers say are just as persistent as, more mobile and harder to remove from the environment than their long-chain counterparts.

A study directed by chemical and biomolecular engineering professor Xiao Su uses electrosorption rather than filters and solvents and combines synthesis, separations testing and computer simulations to help design an electrode that can attract and capture a range of short-chain PFAS from environmental waters. The findings are published in the Journal of the American Chemical Society.

“One of the challenges of working with short-chain PFAS is that they are not well-studied. We know that they contain fewer carbon and fluorine atoms, making them shorter molecules and, therefore, more mobile – or freer to interact within the natural environment,” said Su, who collaborated with chemical and biomolecular engineering professor Diwakar Shukla. “Their electrostatic properties differ and they are more hydrophilic, meaning they are more apt to bond with water molecules. These properties combined make them more difficult to separate from water than their long-chained counterparts.”

The differences among short- and long-chain PFAS – and between long-chain PFAS in general – are significant enough for Su’s team to rethink its previously-developed electrode designed to attract, capture and destroy long-chain PFAS from the environment and drinking water sources. PFAS is an abbreviation for perfluoroalkyl and polyfluoroalkyl substances.

“One way to think of the behavior of short-chain PFAS is that they don’t like to be around anything except their own kind,” Su said. “So, to attract them, we need to sort of bait them with grafted fluorine groups – the ‘F’ in PFAS – on the surface of an electrode.”

Kinship is not the only challenge, though, Su said. 

“The lengths of short-chain PFAS molecules vary, giving them different physical  properties,” Su said. “This means we need to be able to tune the electrode just right to attract and eventually release the short-chain PFAS, with molecular-level understanding of the interactions being key to success.” 

The study details the careful selection, matching and triangulating of different copolymer materials to develop an electrode that can attract a range of short-chain PFAS and induce an electric field to help release the molecules when needed.

Su said this work is a critical early step in removing short-chain PFAS from the environment, which have replaced long-chain PFAS in many industries.

“We still have much work to do,” Su said. “Future studies will focus on coupling the electrodes developed in this study with  electrochemical degradation methods  to ensure removal of these persistent contaminants from the environment.”

Illinois researchers Anaira Román Santiago, Jiho Lee and Johannes Elbert led the experimental investigations within the work, with graduate student Song Yin and Shukla leading the computational simulations. 

The 3M Company, the National Science Foundation, the C3.ai Digital Transformation Institute and the National Center for Supercomputing at Illinois supported this study. 

Su is affiliated with the Beckman Institute for Advanced Science and Technology and also is a professor of civil and environmental engineering at Illinois.

Editor’s notes:

To reach Xiao Su, call 217-300-0134; email x2su@illinois.edu

The paper “Imparting selective fluorophilic interactions in redox copolymers for the electrochemically mediated capture of short-chain perfluoroalkyl substances” is available online. DOI: 10.1021/jacs.2c10963

Read Next

Humanities Diptych image with book cover of "The New Internationals" and a headshot of English professor David Wright Faladé

English professor’s novel tells of love triangle in post-WWII Paris, based on his family history

CHAMPAIGN, Ill. — A new novel by University of Illinois Urbana-Champaign English professor David Wright Faladé tells the story of three people in a love triangle in post-World War II Paris. The characters in “The New Internationals” — a young French woman who has survived the Holocaust, a university student from West Africa and a […]

Life sciences Portrait of the research team posing together.

Minecraft players can now explore whole cells and their contents

CHAMPAIGN, Ill. — Scientists have translated nanoscale experimental and computational data into precise 3D representations of bacteria, yeast and human epithelial, breast and breast cancer cells in Minecraft, a video game that allows players to explore, build and manipulate structures in three dimensions. The innovation will allow researchers and students of all ages to navigate […]

Arts Photo of seven dancers onstage wearing blue tops and orange or yellow flowing skirts. The backdrop is a Persian design.

February Dance includes works experimenting with live music, technology and a ‘sneaker ballet’

CHAMPAIGN, Ill. — The dance department at the University of Illinois Urbana-Champaign will present February Dance 2025: Fast Forward this week at Krannert Center for the Performing Arts. February Dance will be one of the first performances in the newly renovated Colwell Playhouse Theatre since its reopening. The performances are Jan. 30-Feb. 1. Dance professor […]

Strategic Communications and Marketing News Bureau

507 E. Green St
MC-426
Champaign, IL 61820

Email: stratcom@illinois.edu

Phone (217) 333-5010